ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssinfcl Unicode version

Theorem zssinfcl 11951
Description: The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
zssinfcl.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
zssinfcl.ss  |-  ( ph  ->  B  C_  ZZ )
zssinfcl.zz  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
Assertion
Ref Expression
zssinfcl  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Distinct variable groups:    x, B, y, z    ph, x, y, z

Proof of Theorem zssinfcl
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssinfcl.zz . . . . 5  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
21zred 9377 . . . 4  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  RR )
3 1red 7974 . . . 4  |-  ( ph  ->  1  e.  RR )
42, 3readdcld 7989 . . 3  |-  ( ph  ->  (inf ( B ,  RR ,  <  )  +  1 )  e.  RR )
52ltp1d 8889 . . 3  |-  ( ph  -> inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )
6 lttri3 8039 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
76adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
8 zssinfcl.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
97, 8infglbti 7026 . . 3  |-  ( ph  ->  ( ( (inf ( B ,  RR ,  <  )  +  1 )  e.  RR  /\ inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
104, 5, 9mp2and 433 . 2  |-  ( ph  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
112adantr 276 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  RR )
12 zssinfcl.ss . . . . . . . 8  |-  ( ph  ->  B  C_  ZZ )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  B  C_  ZZ )
14 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  B
)
1513, 14sseldd 3158 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  ZZ )
1615zred 9377 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  RR )
177, 8inflbti 7025 . . . . . . 7  |-  ( ph  ->  ( z  e.  B  ->  -.  z  < inf ( B ,  RR ,  <  ) ) )
1817imp 124 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
1918adantrr 479 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
2011, 16, 19nltled 8080 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  <_ 
z )
21 simprr 531 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
221adantr 276 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  ZZ )
23 zleltp1 9310 . . . . . 6  |-  ( ( z  e.  ZZ  /\ inf ( B ,  RR ,  <  )  e.  ZZ )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2415, 22, 23syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2521, 24mpbird 167 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <_ inf ( B ,  RR ,  <  ) )
2611, 16letri3d 8075 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  (inf ( B ,  RR ,  <  )  =  z  <->  (inf ( B ,  RR ,  <  )  <_  z  /\  z  <_ inf ( B ,  RR ,  <  ) ) ) )
2720, 25, 26mpbir2and 944 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  =  z )
2827, 14eqeltrd 2254 . 2  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  B )
2910, 28rexlimddv 2599 1  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   class class class wbr 4005  (class class class)co 5877  infcinf 6984   RRcr 7812   1c1 7814    + caddc 7816    < clt 7994    <_ cle 7995   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator