ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssinfcl Unicode version

Theorem zssinfcl 10447
Description: The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
zssinfcl.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
zssinfcl.ss  |-  ( ph  ->  B  C_  ZZ )
zssinfcl.zz  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
Assertion
Ref Expression
zssinfcl  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Distinct variable groups:    x, B, y, z    ph, x, y, z

Proof of Theorem zssinfcl
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssinfcl.zz . . . . 5  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
21zred 9565 . . . 4  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  RR )
3 1red 8157 . . . 4  |-  ( ph  ->  1  e.  RR )
42, 3readdcld 8172 . . 3  |-  ( ph  ->  (inf ( B ,  RR ,  <  )  +  1 )  e.  RR )
52ltp1d 9073 . . 3  |-  ( ph  -> inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )
6 lttri3 8222 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
76adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
8 zssinfcl.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
97, 8infglbti 7188 . . 3  |-  ( ph  ->  ( ( (inf ( B ,  RR ,  <  )  +  1 )  e.  RR  /\ inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
104, 5, 9mp2and 433 . 2  |-  ( ph  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
112adantr 276 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  RR )
12 zssinfcl.ss . . . . . . . 8  |-  ( ph  ->  B  C_  ZZ )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  B  C_  ZZ )
14 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  B
)
1513, 14sseldd 3225 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  ZZ )
1615zred 9565 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  RR )
177, 8inflbti 7187 . . . . . . 7  |-  ( ph  ->  ( z  e.  B  ->  -.  z  < inf ( B ,  RR ,  <  ) ) )
1817imp 124 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
1918adantrr 479 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
2011, 16, 19nltled 8263 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  <_ 
z )
21 simprr 531 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
221adantr 276 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  ZZ )
23 zleltp1 9498 . . . . . 6  |-  ( ( z  e.  ZZ  /\ inf ( B ,  RR ,  <  )  e.  ZZ )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2415, 22, 23syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2521, 24mpbird 167 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <_ inf ( B ,  RR ,  <  ) )
2611, 16letri3d 8258 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  (inf ( B ,  RR ,  <  )  =  z  <->  (inf ( B ,  RR ,  <  )  <_  z  /\  z  <_ inf ( B ,  RR ,  <  ) ) ) )
2720, 25, 26mpbir2and 950 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  =  z )
2827, 14eqeltrd 2306 . 2  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  B )
2910, 28rexlimddv 2653 1  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   class class class wbr 4082  (class class class)co 6000  infcinf 7146   RRcr 7994   1c1 7996    + caddc 7998    < clt 8177    <_ cle 8178   ZZcz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator