ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zssinfcl Unicode version

Theorem zssinfcl 10322
Description: The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
zssinfcl.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
zssinfcl.ss  |-  ( ph  ->  B  C_  ZZ )
zssinfcl.zz  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
Assertion
Ref Expression
zssinfcl  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Distinct variable groups:    x, B, y, z    ph, x, y, z

Proof of Theorem zssinfcl
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zssinfcl.zz . . . . 5  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  ZZ )
21zred 9448 . . . 4  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  RR )
3 1red 8041 . . . 4  |-  ( ph  ->  1  e.  RR )
42, 3readdcld 8056 . . 3  |-  ( ph  ->  (inf ( B ,  RR ,  <  )  +  1 )  e.  RR )
52ltp1d 8957 . . 3  |-  ( ph  -> inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )
6 lttri3 8106 . . . . 5  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
76adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
8 zssinfcl.ex . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  B  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  B  z  <  y ) ) )
97, 8infglbti 7091 . . 3  |-  ( ph  ->  ( ( (inf ( B ,  RR ,  <  )  +  1 )  e.  RR  /\ inf ( B ,  RR ,  <  )  <  (inf ( B ,  RR ,  <  )  +  1 ) )  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
104, 5, 9mp2and 433 . 2  |-  ( ph  ->  E. z  e.  B  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
112adantr 276 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  RR )
12 zssinfcl.ss . . . . . . . 8  |-  ( ph  ->  B  C_  ZZ )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  B  C_  ZZ )
14 simprl 529 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  B
)
1513, 14sseldd 3184 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  ZZ )
1615zred 9448 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  e.  RR )
177, 8inflbti 7090 . . . . . . 7  |-  ( ph  ->  ( z  e.  B  ->  -.  z  < inf ( B ,  RR ,  <  ) ) )
1817imp 124 . . . . . 6  |-  ( (
ph  /\  z  e.  B )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
1918adantrr 479 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  -.  z  < inf ( B ,  RR ,  <  ) )
2011, 16, 19nltled 8147 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  <_ 
z )
21 simprr 531 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) )
221adantr 276 . . . . . 6  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  ZZ )
23 zleltp1 9381 . . . . . 6  |-  ( ( z  e.  ZZ  /\ inf ( B ,  RR ,  <  )  e.  ZZ )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2415, 22, 23syl2anc 411 . . . . 5  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  ( z  <_ inf ( B ,  RR ,  <  )  <->  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )
2521, 24mpbird 167 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  z  <_ inf ( B ,  RR ,  <  ) )
2611, 16letri3d 8142 . . . 4  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  ->  (inf ( B ,  RR ,  <  )  =  z  <->  (inf ( B ,  RR ,  <  )  <_  z  /\  z  <_ inf ( B ,  RR ,  <  ) ) ) )
2720, 25, 26mpbir2and 946 . . 3  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  =  z )
2827, 14eqeltrd 2273 . 2  |-  ( (
ph  /\  ( z  e.  B  /\  z  <  (inf ( B ,  RR ,  <  )  +  1 ) ) )  -> inf ( B ,  RR ,  <  )  e.  B )
2910, 28rexlimddv 2619 1  |-  ( ph  -> inf ( B ,  RR ,  <  )  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4033  (class class class)co 5922  infcinf 7049   RRcr 7878   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator