Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  inffz Unicode version

Theorem inffz 16399
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
inffz  |-  ( N  e.  ( ZZ>= `  M
)  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )

Proof of Theorem inffz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
21zred 9565 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  RR )
3 simprr 531 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
43zred 9565 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  RR )
52, 4lttri3d 8257 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  =  y  <->  ( -.  x  <  y  /\  -.  y  <  x ) ) )
6 eluzel2 9723 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7 eluzfz1 10223 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
8 elfzle1 10219 . . . 4  |-  ( z  e.  ( M ... N )  ->  M  <_  z )
98adantl 277 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  M  <_  z )
106zred 9565 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  RR )
11 elfzelz 10217 . . . . 5  |-  ( z  e.  ( M ... N )  ->  z  e.  ZZ )
1211zred 9565 . . . 4  |-  ( z  e.  ( M ... N )  ->  z  e.  RR )
13 lenlt 8218 . . . 4  |-  ( ( M  e.  RR  /\  z  e.  RR )  ->  ( M  <_  z  <->  -.  z  <  M ) )
1410, 12, 13syl2an 289 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  ( M  <_  z  <->  -.  z  <  M ) )
159, 14mpbid 147 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  -.  z  <  M )
165, 6, 7, 15infminti 7190 1  |-  ( N  e.  ( ZZ>= `  M
)  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000  infcinf 7146   RRcr 7994    < clt 8177    <_ cle 8178   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-apti 8110
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-neg 8316  df-z 9443  df-uz 9719  df-fz 10201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator