Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  inffz Unicode version

Theorem inffz 15944
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
inffz  |-  ( N  e.  ( ZZ>= `  M
)  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )

Proof of Theorem inffz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
21zred 9494 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  RR )
3 simprr 531 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
43zred 9494 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  RR )
52, 4lttri3d 8186 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  =  y  <->  ( -.  x  <  y  /\  -.  y  <  x ) ) )
6 eluzel2 9652 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7 eluzfz1 10152 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
8 elfzle1 10148 . . . 4  |-  ( z  e.  ( M ... N )  ->  M  <_  z )
98adantl 277 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  M  <_  z )
106zred 9494 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  RR )
11 elfzelz 10146 . . . . 5  |-  ( z  e.  ( M ... N )  ->  z  e.  ZZ )
1211zred 9494 . . . 4  |-  ( z  e.  ( M ... N )  ->  z  e.  RR )
13 lenlt 8147 . . . 4  |-  ( ( M  e.  RR  /\  z  e.  RR )  ->  ( M  <_  z  <->  -.  z  <  M ) )
1410, 12, 13syl2an 289 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  ( M  <_  z  <->  -.  z  <  M ) )
159, 14mpbid 147 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  -.  z  <  M )
165, 6, 7, 15infminti 7128 1  |-  ( N  e.  ( ZZ>= `  M
)  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5270  (class class class)co 5943  infcinf 7084   RRcr 7923    < clt 8106    <_ cle 8107   ZZcz 9371   ZZ>=cuz 9647   ...cfz 10129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-pre-ltirr 8036  ax-pre-apti 8039
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-neg 8245  df-z 9372  df-uz 9648  df-fz 10130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator