Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  inffz Unicode version

Theorem inffz 14822
Description: The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
inffz  |-  ( N  e.  ( ZZ>= `  M
)  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )

Proof of Theorem inffz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
21zred 9375 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  RR )
3 simprr 531 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
43zred 9375 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  RR )
52, 4lttri3d 8072 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  =  y  <->  ( -.  x  <  y  /\  -.  y  <  x ) ) )
6 eluzel2 9533 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
7 eluzfz1 10031 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
8 elfzle1 10027 . . . 4  |-  ( z  e.  ( M ... N )  ->  M  <_  z )
98adantl 277 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  M  <_  z )
106zred 9375 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  RR )
11 elfzelz 10025 . . . . 5  |-  ( z  e.  ( M ... N )  ->  z  e.  ZZ )
1211zred 9375 . . . 4  |-  ( z  e.  ( M ... N )  ->  z  e.  RR )
13 lenlt 8033 . . . 4  |-  ( ( M  e.  RR  /\  z  e.  RR )  ->  ( M  <_  z  <->  -.  z  <  M ) )
1410, 12, 13syl2an 289 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  ( M  <_  z  <->  -.  z  <  M ) )
159, 14mpbid 147 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  -.  z  <  M )
165, 6, 7, 15infminti 7026 1  |-  ( N  e.  ( ZZ>= `  M
)  -> inf ( ( M ... N ) ,  ZZ ,  <  )  =  M )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4004   ` cfv 5217  (class class class)co 5875  infcinf 6982   RRcr 7810    < clt 7992    <_ cle 7993   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-pre-ltirr 7923  ax-pre-apti 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-neg 8131  df-z 9254  df-uz 9529  df-fz 10009
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator