Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infminti | GIF version |
Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.) |
Ref | Expression |
---|---|
infminti.ti | ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) |
infminti.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
infminti.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
infminti.4 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) |
Ref | Expression |
---|---|
infminti | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infminti.ti | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢))) | |
2 | infminti.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
3 | infminti.4 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) | |
4 | infminti.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
5 | simprr 522 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → 𝐶𝑅𝑦) | |
6 | breq1 3985 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝑧𝑅𝑦 ↔ 𝐶𝑅𝑦)) | |
7 | 6 | rspcev 2830 | . . 3 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐶𝑅𝑦) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
8 | 4, 5, 7 | syl2an2r 585 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
9 | 1, 2, 3, 8 | eqinftid 6986 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 class class class wbr 3982 infcinf 6948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-iota 5153 df-riota 5798 df-sup 6949 df-inf 6950 |
This theorem is referenced by: lbinf 8843 lcmgcdlem 12009 pilem3 13344 inffz 13948 taupi 13949 |
Copyright terms: Public domain | W3C validator |