ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infminti GIF version

Theorem infminti 7141
Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by Jim Kingdon, 18-Dec-2021.)
Hypotheses
Ref Expression
infminti.ti ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
infminti.2 (𝜑𝐶𝐴)
infminti.3 (𝜑𝐶𝐵)
infminti.4 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
Assertion
Ref Expression
infminti (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑢,𝐴,𝑣,𝑦   𝑢,𝐵,𝑣,𝑦   𝑢,𝐶,𝑣,𝑦   𝑢,𝑅,𝑣,𝑦   𝜑,𝑢,𝑣,𝑦

Proof of Theorem infminti
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infminti.ti . 2 ((𝜑 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ↔ (¬ 𝑢𝑅𝑣 ∧ ¬ 𝑣𝑅𝑢)))
2 infminti.2 . 2 (𝜑𝐶𝐴)
3 infminti.4 . 2 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
4 infminti.3 . . 3 (𝜑𝐶𝐵)
5 simprr 531 . . 3 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → 𝐶𝑅𝑦)
6 breq1 4051 . . . 4 (𝑧 = 𝐶 → (𝑧𝑅𝑦𝐶𝑅𝑦))
76rspcev 2879 . . 3 ((𝐶𝐵𝐶𝑅𝑦) → ∃𝑧𝐵 𝑧𝑅𝑦)
84, 5, 7syl2an2r 595 . 2 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
91, 2, 3, 8eqinftid 7135 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4048  infcinf 7097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-cnv 4688  df-iota 5238  df-riota 5909  df-sup 7098  df-inf 7099
This theorem is referenced by:  lbinf  9034  lcmgcdlem  12449  pilem3  15305  inffz  16126  taupi  16127
  Copyright terms: Public domain W3C validator