| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaexab | Unicode version | ||
| Description: Existence of the |
| Ref | Expression |
|---|---|
| iotaexab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4529 |
. 2
| |
| 2 | abid 2217 |
. . . . 5
| |
| 3 | elssuni 3915 |
. . . . 5
| |
| 4 | 2, 3 | sylbir 135 |
. . . 4
|
| 5 | 4 | ax-gen 1495 |
. . 3
|
| 6 | nfab1 2374 |
. . . . . . . 8
| |
| 7 | 6 | nfuni 3893 |
. . . . . . 7
|
| 8 | 7 | nfeq2 2384 |
. . . . . 6
|
| 9 | sseq2 3248 |
. . . . . . 7
| |
| 10 | 9 | imbi2d 230 |
. . . . . 6
|
| 11 | 8, 10 | albid 1661 |
. . . . 5
|
| 12 | sseq2 3248 |
. . . . 5
| |
| 13 | 11, 12 | imbi12d 234 |
. . . 4
|
| 14 | iotass 5295 |
. . . 4
| |
| 15 | 13, 14 | vtoclg 2861 |
. . 3
|
| 16 | 1, 5, 15 | mpisyl 1489 |
. 2
|
| 17 | 1, 16 | ssexd 4223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-iota 5277 |
| This theorem is referenced by: fngsum 13416 igsumvalx 13417 |
| Copyright terms: Public domain | W3C validator |