ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexab Unicode version

Theorem iotaexab 5264
Description: Existence of the  iota class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
Assertion
Ref Expression
iotaexab  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  e.  _V )

Proof of Theorem iotaexab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 uniexg 4499 . 2  |-  ( { x  |  ph }  e.  V  ->  U. {
x  |  ph }  e.  _V )
2 abid 2194 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
3 elssuni 3887 . . . . 5  |-  ( x  e.  { x  | 
ph }  ->  x  C_ 
U. { x  | 
ph } )
42, 3sylbir 135 . . . 4  |-  ( ph  ->  x  C_  U. { x  |  ph } )
54ax-gen 1473 . . 3  |-  A. x
( ph  ->  x  C_  U. { x  |  ph } )
6 nfab1 2351 . . . . . . . 8  |-  F/_ x { x  |  ph }
76nfuni 3865 . . . . . . 7  |-  F/_ x U. { x  |  ph }
87nfeq2 2361 . . . . . 6  |-  F/ x  z  =  U. { x  |  ph }
9 sseq2 3221 . . . . . . 7  |-  ( z  =  U. { x  |  ph }  ->  (
x  C_  z  <->  x  C_  U. {
x  |  ph }
) )
109imbi2d 230 . . . . . 6  |-  ( z  =  U. { x  |  ph }  ->  (
( ph  ->  x  C_  z )  <->  ( ph  ->  x  C_  U. { x  |  ph } ) ) )
118, 10albid 1639 . . . . 5  |-  ( z  =  U. { x  |  ph }  ->  ( A. x ( ph  ->  x 
C_  z )  <->  A. x
( ph  ->  x  C_  U. { x  |  ph } ) ) )
12 sseq2 3221 . . . . 5  |-  ( z  =  U. { x  |  ph }  ->  (
( iota x ph )  C_  z  <->  ( iota x ph )  C_  U. {
x  |  ph }
) )
1311, 12imbi12d 234 . . . 4  |-  ( z  =  U. { x  |  ph }  ->  (
( A. x (
ph  ->  x  C_  z
)  ->  ( iota x ph )  C_  z
)  <->  ( A. x
( ph  ->  x  C_  U. { x  |  ph } )  ->  ( iota x ph )  C_  U. { x  |  ph } ) ) )
14 iotass 5263 . . . 4  |-  ( A. x ( ph  ->  x 
C_  z )  -> 
( iota x ph )  C_  z )
1513, 14vtoclg 2835 . . 3  |-  ( U. { x  |  ph }  e.  _V  ->  ( A. x ( ph  ->  x 
C_  U. { x  | 
ph } )  -> 
( iota x ph )  C_ 
U. { x  | 
ph } ) )
161, 5, 15mpisyl 1467 . 2  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  C_  U. {
x  |  ph }
)
171, 16ssexd 4195 1  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373    e. wcel 2177   {cab 2192   _Vcvv 2773    C_ wss 3170   U.cuni 3859   iotacio 5244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-iota 5246
This theorem is referenced by:  fngsum  13305  igsumvalx  13306
  Copyright terms: Public domain W3C validator