ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexab Unicode version

Theorem iotaexab 5233
Description: Existence of the  iota class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
Assertion
Ref Expression
iotaexab  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  e.  _V )

Proof of Theorem iotaexab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 uniexg 4470 . 2  |-  ( { x  |  ph }  e.  V  ->  U. {
x  |  ph }  e.  _V )
2 abid 2181 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
3 elssuni 3863 . . . . 5  |-  ( x  e.  { x  | 
ph }  ->  x  C_ 
U. { x  | 
ph } )
42, 3sylbir 135 . . . 4  |-  ( ph  ->  x  C_  U. { x  |  ph } )
54ax-gen 1460 . . 3  |-  A. x
( ph  ->  x  C_  U. { x  |  ph } )
6 nfab1 2338 . . . . . . . 8  |-  F/_ x { x  |  ph }
76nfuni 3841 . . . . . . 7  |-  F/_ x U. { x  |  ph }
87nfeq2 2348 . . . . . 6  |-  F/ x  z  =  U. { x  |  ph }
9 sseq2 3203 . . . . . . 7  |-  ( z  =  U. { x  |  ph }  ->  (
x  C_  z  <->  x  C_  U. {
x  |  ph }
) )
109imbi2d 230 . . . . . 6  |-  ( z  =  U. { x  |  ph }  ->  (
( ph  ->  x  C_  z )  <->  ( ph  ->  x  C_  U. { x  |  ph } ) ) )
118, 10albid 1626 . . . . 5  |-  ( z  =  U. { x  |  ph }  ->  ( A. x ( ph  ->  x 
C_  z )  <->  A. x
( ph  ->  x  C_  U. { x  |  ph } ) ) )
12 sseq2 3203 . . . . 5  |-  ( z  =  U. { x  |  ph }  ->  (
( iota x ph )  C_  z  <->  ( iota x ph )  C_  U. {
x  |  ph }
) )
1311, 12imbi12d 234 . . . 4  |-  ( z  =  U. { x  |  ph }  ->  (
( A. x (
ph  ->  x  C_  z
)  ->  ( iota x ph )  C_  z
)  <->  ( A. x
( ph  ->  x  C_  U. { x  |  ph } )  ->  ( iota x ph )  C_  U. { x  |  ph } ) ) )
14 iotass 5232 . . . 4  |-  ( A. x ( ph  ->  x 
C_  z )  -> 
( iota x ph )  C_  z )
1513, 14vtoclg 2820 . . 3  |-  ( U. { x  |  ph }  e.  _V  ->  ( A. x ( ph  ->  x 
C_  U. { x  | 
ph } )  -> 
( iota x ph )  C_ 
U. { x  | 
ph } ) )
161, 5, 15mpisyl 1457 . 2  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  C_  U. {
x  |  ph }
)
171, 16ssexd 4169 1  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760    C_ wss 3153   U.cuni 3835   iotacio 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-iota 5215
This theorem is referenced by:  fngsum  12971  igsumvalx  12972
  Copyright terms: Public domain W3C validator