ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexab Unicode version

Theorem iotaexab 5237
Description: Existence of the  iota class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
Assertion
Ref Expression
iotaexab  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  e.  _V )

Proof of Theorem iotaexab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 uniexg 4474 . 2  |-  ( { x  |  ph }  e.  V  ->  U. {
x  |  ph }  e.  _V )
2 abid 2184 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
3 elssuni 3867 . . . . 5  |-  ( x  e.  { x  | 
ph }  ->  x  C_ 
U. { x  | 
ph } )
42, 3sylbir 135 . . . 4  |-  ( ph  ->  x  C_  U. { x  |  ph } )
54ax-gen 1463 . . 3  |-  A. x
( ph  ->  x  C_  U. { x  |  ph } )
6 nfab1 2341 . . . . . . . 8  |-  F/_ x { x  |  ph }
76nfuni 3845 . . . . . . 7  |-  F/_ x U. { x  |  ph }
87nfeq2 2351 . . . . . 6  |-  F/ x  z  =  U. { x  |  ph }
9 sseq2 3207 . . . . . . 7  |-  ( z  =  U. { x  |  ph }  ->  (
x  C_  z  <->  x  C_  U. {
x  |  ph }
) )
109imbi2d 230 . . . . . 6  |-  ( z  =  U. { x  |  ph }  ->  (
( ph  ->  x  C_  z )  <->  ( ph  ->  x  C_  U. { x  |  ph } ) ) )
118, 10albid 1629 . . . . 5  |-  ( z  =  U. { x  |  ph }  ->  ( A. x ( ph  ->  x 
C_  z )  <->  A. x
( ph  ->  x  C_  U. { x  |  ph } ) ) )
12 sseq2 3207 . . . . 5  |-  ( z  =  U. { x  |  ph }  ->  (
( iota x ph )  C_  z  <->  ( iota x ph )  C_  U. {
x  |  ph }
) )
1311, 12imbi12d 234 . . . 4  |-  ( z  =  U. { x  |  ph }  ->  (
( A. x (
ph  ->  x  C_  z
)  ->  ( iota x ph )  C_  z
)  <->  ( A. x
( ph  ->  x  C_  U. { x  |  ph } )  ->  ( iota x ph )  C_  U. { x  |  ph } ) ) )
14 iotass 5236 . . . 4  |-  ( A. x ( ph  ->  x 
C_  z )  -> 
( iota x ph )  C_  z )
1513, 14vtoclg 2824 . . 3  |-  ( U. { x  |  ph }  e.  _V  ->  ( A. x ( ph  ->  x 
C_  U. { x  | 
ph } )  -> 
( iota x ph )  C_ 
U. { x  | 
ph } ) )
161, 5, 15mpisyl 1457 . 2  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  C_  U. {
x  |  ph }
)
171, 16ssexd 4173 1  |-  ( { x  |  ph }  e.  V  ->  ( iota
x ph )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182   _Vcvv 2763    C_ wss 3157   U.cuni 3839   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219
This theorem is referenced by:  fngsum  13031  igsumvalx  13032
  Copyright terms: Public domain W3C validator