ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexab GIF version

Theorem iotaexab 5273
Description: Existence of the class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
Assertion
Ref Expression
iotaexab ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V)

Proof of Theorem iotaexab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uniexg 4507 . 2 ({𝑥𝜑} ∈ 𝑉 {𝑥𝜑} ∈ V)
2 abid 2197 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
3 elssuni 3895 . . . . 5 (𝑥 ∈ {𝑥𝜑} → 𝑥 {𝑥𝜑})
42, 3sylbir 135 . . . 4 (𝜑𝑥 {𝑥𝜑})
54ax-gen 1475 . . 3 𝑥(𝜑𝑥 {𝑥𝜑})
6 nfab1 2354 . . . . . . . 8 𝑥{𝑥𝜑}
76nfuni 3873 . . . . . . 7 𝑥 {𝑥𝜑}
87nfeq2 2364 . . . . . 6 𝑥 𝑧 = {𝑥𝜑}
9 sseq2 3228 . . . . . . 7 (𝑧 = {𝑥𝜑} → (𝑥𝑧𝑥 {𝑥𝜑}))
109imbi2d 230 . . . . . 6 (𝑧 = {𝑥𝜑} → ((𝜑𝑥𝑧) ↔ (𝜑𝑥 {𝑥𝜑})))
118, 10albid 1641 . . . . 5 (𝑧 = {𝑥𝜑} → (∀𝑥(𝜑𝑥𝑧) ↔ ∀𝑥(𝜑𝑥 {𝑥𝜑})))
12 sseq2 3228 . . . . 5 (𝑧 = {𝑥𝜑} → ((℩𝑥𝜑) ⊆ 𝑧 ↔ (℩𝑥𝜑) ⊆ {𝑥𝜑}))
1311, 12imbi12d 234 . . . 4 (𝑧 = {𝑥𝜑} → ((∀𝑥(𝜑𝑥𝑧) → (℩𝑥𝜑) ⊆ 𝑧) ↔ (∀𝑥(𝜑𝑥 {𝑥𝜑}) → (℩𝑥𝜑) ⊆ {𝑥𝜑})))
14 iotass 5272 . . . 4 (∀𝑥(𝜑𝑥𝑧) → (℩𝑥𝜑) ⊆ 𝑧)
1513, 14vtoclg 2841 . . 3 ( {𝑥𝜑} ∈ V → (∀𝑥(𝜑𝑥 {𝑥𝜑}) → (℩𝑥𝜑) ⊆ {𝑥𝜑}))
161, 5, 15mpisyl 1469 . 2 ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
171, 16ssexd 4203 1 ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373   = wceq 1375  wcel 2180  {cab 2195  Vcvv 2779  wss 3177   cuni 3867  cio 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-uni 3868  df-iota 5254
This theorem is referenced by:  fngsum  13387  igsumvalx  13388
  Copyright terms: Public domain W3C validator