![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iotaexab | GIF version |
Description: Existence of the ℩ class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.) |
Ref | Expression |
---|---|
iotaexab | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 4471 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → ∪ {𝑥 ∣ 𝜑} ∈ V) | |
2 | abid 2181 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
3 | elssuni 3864 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) | |
4 | 2, 3 | sylbir 135 | . . . 4 ⊢ (𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) |
5 | 4 | ax-gen 1460 | . . 3 ⊢ ∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) |
6 | nfab1 2338 | . . . . . . . 8 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
7 | 6 | nfuni 3842 | . . . . . . 7 ⊢ Ⅎ𝑥∪ {𝑥 ∣ 𝜑} |
8 | 7 | nfeq2 2348 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 = ∪ {𝑥 ∣ 𝜑} |
9 | sseq2 3204 | . . . . . . 7 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → (𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑})) | |
10 | 9 | imbi2d 230 | . . . . . 6 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((𝜑 → 𝑥 ⊆ 𝑧) ↔ (𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}))) |
11 | 8, 10 | albid 1626 | . . . . 5 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → (∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) ↔ ∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}))) |
12 | sseq2 3204 | . . . . 5 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((℩𝑥𝜑) ⊆ 𝑧 ↔ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑})) | |
13 | 11, 12 | imbi12d 234 | . . . 4 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) → (℩𝑥𝜑) ⊆ 𝑧) ↔ (∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}))) |
14 | iotass 5233 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) → (℩𝑥𝜑) ⊆ 𝑧) | |
15 | 13, 14 | vtoclg 2821 | . . 3 ⊢ (∪ {𝑥 ∣ 𝜑} ∈ V → (∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑})) |
16 | 1, 5, 15 | mpisyl 1457 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
17 | 1, 16 | ssexd 4170 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2164 {cab 2179 Vcvv 2760 ⊆ wss 3154 ∪ cuni 3836 ℩cio 5214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-iota 5216 |
This theorem is referenced by: fngsum 12974 igsumvalx 12975 |
Copyright terms: Public domain | W3C validator |