ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexab GIF version

Theorem iotaexab 5214
Description: Existence of the class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
Assertion
Ref Expression
iotaexab ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V)

Proof of Theorem iotaexab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uniexg 4457 . 2 ({𝑥𝜑} ∈ 𝑉 {𝑥𝜑} ∈ V)
2 abid 2177 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
3 elssuni 3852 . . . . 5 (𝑥 ∈ {𝑥𝜑} → 𝑥 {𝑥𝜑})
42, 3sylbir 135 . . . 4 (𝜑𝑥 {𝑥𝜑})
54ax-gen 1460 . . 3 𝑥(𝜑𝑥 {𝑥𝜑})
6 nfab1 2334 . . . . . . . 8 𝑥{𝑥𝜑}
76nfuni 3830 . . . . . . 7 𝑥 {𝑥𝜑}
87nfeq2 2344 . . . . . 6 𝑥 𝑧 = {𝑥𝜑}
9 sseq2 3194 . . . . . . 7 (𝑧 = {𝑥𝜑} → (𝑥𝑧𝑥 {𝑥𝜑}))
109imbi2d 230 . . . . . 6 (𝑧 = {𝑥𝜑} → ((𝜑𝑥𝑧) ↔ (𝜑𝑥 {𝑥𝜑})))
118, 10albid 1626 . . . . 5 (𝑧 = {𝑥𝜑} → (∀𝑥(𝜑𝑥𝑧) ↔ ∀𝑥(𝜑𝑥 {𝑥𝜑})))
12 sseq2 3194 . . . . 5 (𝑧 = {𝑥𝜑} → ((℩𝑥𝜑) ⊆ 𝑧 ↔ (℩𝑥𝜑) ⊆ {𝑥𝜑}))
1311, 12imbi12d 234 . . . 4 (𝑧 = {𝑥𝜑} → ((∀𝑥(𝜑𝑥𝑧) → (℩𝑥𝜑) ⊆ 𝑧) ↔ (∀𝑥(𝜑𝑥 {𝑥𝜑}) → (℩𝑥𝜑) ⊆ {𝑥𝜑})))
14 iotass 5213 . . . 4 (∀𝑥(𝜑𝑥𝑧) → (℩𝑥𝜑) ⊆ 𝑧)
1513, 14vtoclg 2812 . . 3 ( {𝑥𝜑} ∈ V → (∀𝑥(𝜑𝑥 {𝑥𝜑}) → (℩𝑥𝜑) ⊆ {𝑥𝜑}))
161, 5, 15mpisyl 1457 . 2 ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
171, 16ssexd 4158 1 ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wcel 2160  {cab 2175  Vcvv 2752  wss 3144   cuni 3824  cio 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-iota 5196
This theorem is referenced by:  fngsum  12867  igsumvalx  12868
  Copyright terms: Public domain W3C validator