| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iotaexab | GIF version | ||
| Description: Existence of the ℩ class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.) | 
| Ref | Expression | 
|---|---|
| iotaexab | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uniexg 4474 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → ∪ {𝑥 ∣ 𝜑} ∈ V) | |
| 2 | abid 2184 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 3 | elssuni 3867 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) | |
| 4 | 2, 3 | sylbir 135 | . . . 4 ⊢ (𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) | 
| 5 | 4 | ax-gen 1463 | . . 3 ⊢ ∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) | 
| 6 | nfab1 2341 | . . . . . . . 8 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 7 | 6 | nfuni 3845 | . . . . . . 7 ⊢ Ⅎ𝑥∪ {𝑥 ∣ 𝜑} | 
| 8 | 7 | nfeq2 2351 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 = ∪ {𝑥 ∣ 𝜑} | 
| 9 | sseq2 3207 | . . . . . . 7 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → (𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑})) | |
| 10 | 9 | imbi2d 230 | . . . . . 6 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((𝜑 → 𝑥 ⊆ 𝑧) ↔ (𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}))) | 
| 11 | 8, 10 | albid 1629 | . . . . 5 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → (∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) ↔ ∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}))) | 
| 12 | sseq2 3207 | . . . . 5 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((℩𝑥𝜑) ⊆ 𝑧 ↔ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑})) | |
| 13 | 11, 12 | imbi12d 234 | . . . 4 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) → (℩𝑥𝜑) ⊆ 𝑧) ↔ (∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}))) | 
| 14 | iotass 5236 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) → (℩𝑥𝜑) ⊆ 𝑧) | |
| 15 | 13, 14 | vtoclg 2824 | . . 3 ⊢ (∪ {𝑥 ∣ 𝜑} ∈ V → (∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑})) | 
| 16 | 1, 5, 15 | mpisyl 1457 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) | 
| 17 | 1, 16 | ssexd 4173 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 ∈ wcel 2167 {cab 2182 Vcvv 2763 ⊆ wss 3157 ∪ cuni 3839 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: fngsum 13031 igsumvalx 13032 | 
| Copyright terms: Public domain | W3C validator |