ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaexab GIF version

Theorem iotaexab 5255
Description: Existence of the class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.)
Assertion
Ref Expression
iotaexab ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V)

Proof of Theorem iotaexab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 uniexg 4490 . 2 ({𝑥𝜑} ∈ 𝑉 {𝑥𝜑} ∈ V)
2 abid 2194 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
3 elssuni 3880 . . . . 5 (𝑥 ∈ {𝑥𝜑} → 𝑥 {𝑥𝜑})
42, 3sylbir 135 . . . 4 (𝜑𝑥 {𝑥𝜑})
54ax-gen 1473 . . 3 𝑥(𝜑𝑥 {𝑥𝜑})
6 nfab1 2351 . . . . . . . 8 𝑥{𝑥𝜑}
76nfuni 3858 . . . . . . 7 𝑥 {𝑥𝜑}
87nfeq2 2361 . . . . . 6 𝑥 𝑧 = {𝑥𝜑}
9 sseq2 3218 . . . . . . 7 (𝑧 = {𝑥𝜑} → (𝑥𝑧𝑥 {𝑥𝜑}))
109imbi2d 230 . . . . . 6 (𝑧 = {𝑥𝜑} → ((𝜑𝑥𝑧) ↔ (𝜑𝑥 {𝑥𝜑})))
118, 10albid 1639 . . . . 5 (𝑧 = {𝑥𝜑} → (∀𝑥(𝜑𝑥𝑧) ↔ ∀𝑥(𝜑𝑥 {𝑥𝜑})))
12 sseq2 3218 . . . . 5 (𝑧 = {𝑥𝜑} → ((℩𝑥𝜑) ⊆ 𝑧 ↔ (℩𝑥𝜑) ⊆ {𝑥𝜑}))
1311, 12imbi12d 234 . . . 4 (𝑧 = {𝑥𝜑} → ((∀𝑥(𝜑𝑥𝑧) → (℩𝑥𝜑) ⊆ 𝑧) ↔ (∀𝑥(𝜑𝑥 {𝑥𝜑}) → (℩𝑥𝜑) ⊆ {𝑥𝜑})))
14 iotass 5254 . . . 4 (∀𝑥(𝜑𝑥𝑧) → (℩𝑥𝜑) ⊆ 𝑧)
1513, 14vtoclg 2834 . . 3 ( {𝑥𝜑} ∈ V → (∀𝑥(𝜑𝑥 {𝑥𝜑}) → (℩𝑥𝜑) ⊆ {𝑥𝜑}))
161, 5, 15mpisyl 1467 . 2 ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ⊆ {𝑥𝜑})
171, 16ssexd 4188 1 ({𝑥𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  wss 3167   cuni 3852  cio 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-uni 3853  df-iota 5237
This theorem is referenced by:  fngsum  13264  igsumvalx  13265
  Copyright terms: Public domain W3C validator