| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaexab | GIF version | ||
| Description: Existence of the ℩ class when all the possible values are contained in a set. (Contributed by Jim Kingdon, 27-May-2025.) |
| Ref | Expression |
|---|---|
| iotaexab | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4490 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → ∪ {𝑥 ∣ 𝜑} ∈ V) | |
| 2 | abid 2194 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 3 | elssuni 3880 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) | |
| 4 | 2, 3 | sylbir 135 | . . . 4 ⊢ (𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 5 | 4 | ax-gen 1473 | . . 3 ⊢ ∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 6 | nfab1 2351 | . . . . . . . 8 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 7 | 6 | nfuni 3858 | . . . . . . 7 ⊢ Ⅎ𝑥∪ {𝑥 ∣ 𝜑} |
| 8 | 7 | nfeq2 2361 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 = ∪ {𝑥 ∣ 𝜑} |
| 9 | sseq2 3218 | . . . . . . 7 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → (𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑})) | |
| 10 | 9 | imbi2d 230 | . . . . . 6 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((𝜑 → 𝑥 ⊆ 𝑧) ↔ (𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}))) |
| 11 | 8, 10 | albid 1639 | . . . . 5 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → (∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) ↔ ∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}))) |
| 12 | sseq2 3218 | . . . . 5 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((℩𝑥𝜑) ⊆ 𝑧 ↔ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑})) | |
| 13 | 11, 12 | imbi12d 234 | . . . 4 ⊢ (𝑧 = ∪ {𝑥 ∣ 𝜑} → ((∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) → (℩𝑥𝜑) ⊆ 𝑧) ↔ (∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}))) |
| 14 | iotass 5254 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ⊆ 𝑧) → (℩𝑥𝜑) ⊆ 𝑧) | |
| 15 | 13, 14 | vtoclg 2834 | . . 3 ⊢ (∪ {𝑥 ∣ 𝜑} ∈ V → (∀𝑥(𝜑 → 𝑥 ⊆ ∪ {𝑥 ∣ 𝜑}) → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑})) |
| 16 | 1, 5, 15 | mpisyl 1467 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑}) |
| 17 | 1, 16 | ssexd 4188 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝑉 → (℩𝑥𝜑) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ⊆ wss 3167 ∪ cuni 3852 ℩cio 5235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-uni 3853 df-iota 5237 |
| This theorem is referenced by: fngsum 13264 igsumvalx 13265 |
| Copyright terms: Public domain | W3C validator |