| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finacn | Unicode version | ||
| Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| finacn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6764 |
. . . . . . . . 9
| |
| 2 | 1 | adantl 277 |
. . . . . . . 8
|
| 3 | ffvelcdm 5720 |
. . . . . . . . . . . . 13
| |
| 4 | eleq2 2270 |
. . . . . . . . . . . . . . 15
| |
| 5 | 4 | exbidv 1849 |
. . . . . . . . . . . . . 14
|
| 6 | 5 | elrab 2930 |
. . . . . . . . . . . . 13
|
| 7 | 3, 6 | sylib 122 |
. . . . . . . . . . . 12
|
| 8 | 7 | simprd 114 |
. . . . . . . . . . 11
|
| 9 | eleq1w 2267 |
. . . . . . . . . . . 12
| |
| 10 | 9 | cbvexv 1943 |
. . . . . . . . . . 11
|
| 11 | 8, 10 | sylib 122 |
. . . . . . . . . 10
|
| 12 | rexv 2791 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | sylibr 134 |
. . . . . . . . 9
|
| 14 | 13 | ralrimiva 2580 |
. . . . . . . 8
|
| 15 | 2, 14 | syl 14 |
. . . . . . 7
|
| 16 | eleq1 2269 |
. . . . . . . 8
| |
| 17 | 16 | ac6sfi 7002 |
. . . . . . 7
|
| 18 | 15, 17 | syldan 282 |
. . . . . 6
|
| 19 | exsimpr 1642 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 20 | ralrimiva 2580 |
. . . 4
|
| 22 | vex 2776 |
. . . . 5
| |
| 23 | isacnm 7322 |
. . . . 5
| |
| 24 | 22, 23 | mpan 424 |
. . . 4
|
| 25 | 21, 24 | mpbird 167 |
. . 3
|
| 26 | 22 | a1i 9 |
. . 3
|
| 27 | 25, 26 | 2thd 175 |
. 2
|
| 28 | 27 | eqrdv 2204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-er 6627 df-map 6744 df-en 6835 df-fin 6837 df-acnm 7294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |