ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finacn Unicode version

Theorem finacn 7354
Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
finacn  |-  ( A  e.  Fin  -> AC  A  =  _V )

Proof of Theorem finacn
Dummy variables  f  g  x  y  z  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6787 . . . . . . . . 9  |-  ( f  e.  ( { w  e.  ~P x  |  E. j  j  e.  w }  ^m  A )  -> 
f : A --> { w  e.  ~P x  |  E. j  j  e.  w } )
21adantl 277 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  f  e.  ( {
w  e.  ~P x  |  E. j  j  e.  w }  ^m  A
) )  ->  f : A --> { w  e. 
~P x  |  E. j  j  e.  w } )
3 ffvelcdm 5741 . . . . . . . . . . . . 13  |-  ( ( f : A --> { w  e.  ~P x  |  E. j  j  e.  w }  /\  y  e.  A
)  ->  ( f `  y )  e.  {
w  e.  ~P x  |  E. j  j  e.  w } )
4 eleq2 2273 . . . . . . . . . . . . . . 15  |-  ( w  =  ( f `  y )  ->  (
j  e.  w  <->  j  e.  ( f `  y
) ) )
54exbidv 1851 . . . . . . . . . . . . . 14  |-  ( w  =  ( f `  y )  ->  ( E. j  j  e.  w 
<->  E. j  j  e.  ( f `  y
) ) )
65elrab 2939 . . . . . . . . . . . . 13  |-  ( ( f `  y )  e.  { w  e. 
~P x  |  E. j  j  e.  w } 
<->  ( ( f `  y )  e.  ~P x  /\  E. j  j  e.  ( f `  y ) ) )
73, 6sylib 122 . . . . . . . . . . . 12  |-  ( ( f : A --> { w  e.  ~P x  |  E. j  j  e.  w }  /\  y  e.  A
)  ->  ( (
f `  y )  e.  ~P x  /\  E. j  j  e.  (
f `  y )
) )
87simprd 114 . . . . . . . . . . 11  |-  ( ( f : A --> { w  e.  ~P x  |  E. j  j  e.  w }  /\  y  e.  A
)  ->  E. j 
j  e.  ( f `
 y ) )
9 eleq1w 2270 . . . . . . . . . . . 12  |-  ( j  =  z  ->  (
j  e.  ( f `
 y )  <->  z  e.  ( f `  y
) ) )
109cbvexv 1945 . . . . . . . . . . 11  |-  ( E. j  j  e.  ( f `  y )  <->  E. z  z  e.  ( f `  y
) )
118, 10sylib 122 . . . . . . . . . 10  |-  ( ( f : A --> { w  e.  ~P x  |  E. j  j  e.  w }  /\  y  e.  A
)  ->  E. z 
z  e.  ( f `
 y ) )
12 rexv 2798 . . . . . . . . . 10  |-  ( E. z  e.  _V  z  e.  ( f `  y
)  <->  E. z  z  e.  ( f `  y
) )
1311, 12sylibr 134 . . . . . . . . 9  |-  ( ( f : A --> { w  e.  ~P x  |  E. j  j  e.  w }  /\  y  e.  A
)  ->  E. z  e.  _V  z  e.  ( f `  y ) )
1413ralrimiva 2583 . . . . . . . 8  |-  ( f : A --> { w  e.  ~P x  |  E. j  j  e.  w }  ->  A. y  e.  A  E. z  e.  _V  z  e.  ( f `  y ) )
152, 14syl 14 . . . . . . 7  |-  ( ( A  e.  Fin  /\  f  e.  ( {
w  e.  ~P x  |  E. j  j  e.  w }  ^m  A
) )  ->  A. y  e.  A  E. z  e.  _V  z  e.  ( f `  y ) )
16 eleq1 2272 . . . . . . . 8  |-  ( z  =  ( g `  y )  ->  (
z  e.  ( f `
 y )  <->  ( g `  y )  e.  ( f `  y ) ) )
1716ac6sfi 7028 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. y  e.  A  E. z  e.  _V  z  e.  ( f `  y
) )  ->  E. g
( g : A --> _V  /\  A. y  e.  A  ( g `  y )  e.  ( f `  y ) ) )
1815, 17syldan 282 . . . . . 6  |-  ( ( A  e.  Fin  /\  f  e.  ( {
w  e.  ~P x  |  E. j  j  e.  w }  ^m  A
) )  ->  E. g
( g : A --> _V  /\  A. y  e.  A  ( g `  y )  e.  ( f `  y ) ) )
19 exsimpr 1644 . . . . . 6  |-  ( E. g ( g : A --> _V  /\  A. y  e.  A  ( g `  y )  e.  ( f `  y ) )  ->  E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) )
2018, 19syl 14 . . . . 5  |-  ( ( A  e.  Fin  /\  f  e.  ( {
w  e.  ~P x  |  E. j  j  e.  w }  ^m  A
) )  ->  E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) )
2120ralrimiva 2583 . . . 4  |-  ( A  e.  Fin  ->  A. f  e.  ( { w  e. 
~P x  |  E. j  j  e.  w }  ^m  A ) E. g A. y  e.  A  ( g `  y )  e.  ( f `  y ) )
22 vex 2782 . . . . 5  |-  x  e. 
_V
23 isacnm 7353 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  Fin )  ->  ( x  e. AC  A  <->  A. f  e.  ( { w  e. 
~P x  |  E. j  j  e.  w }  ^m  A ) E. g A. y  e.  A  ( g `  y )  e.  ( f `  y ) ) )
2422, 23mpan 424 . . . 4  |-  ( A  e.  Fin  ->  (
x  e. AC  A  <->  A. f  e.  ( { w  e. 
~P x  |  E. j  j  e.  w }  ^m  A ) E. g A. y  e.  A  ( g `  y )  e.  ( f `  y ) ) )
2521, 24mpbird 167 . . 3  |-  ( A  e.  Fin  ->  x  e. AC  A )
2622a1i 9 . . 3  |-  ( A  e.  Fin  ->  x  e.  _V )
2725, 262thd 175 . 2  |-  ( A  e.  Fin  ->  (
x  e. AC  A  <->  x  e.  _V ) )
2827eqrdv 2207 1  |-  ( A  e.  Fin  -> AC  A  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375   E.wex 1518    e. wcel 2180   A.wral 2488   E.wrex 2489   {crab 2492   _Vcvv 2779   ~Pcpw 3629   -->wf 5290   ` cfv 5294  (class class class)co 5974    ^m cmap 6765   Fincfn 6857  AC wacn 7318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-er 6650  df-map 6767  df-en 6858  df-fin 6860  df-acnm 7320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator