| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > finacn | Unicode version | ||
| Description: Every set has finite choice sequences. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| finacn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6787 |
. . . . . . . . 9
| |
| 2 | 1 | adantl 277 |
. . . . . . . 8
|
| 3 | ffvelcdm 5741 |
. . . . . . . . . . . . 13
| |
| 4 | eleq2 2273 |
. . . . . . . . . . . . . . 15
| |
| 5 | 4 | exbidv 1851 |
. . . . . . . . . . . . . 14
|
| 6 | 5 | elrab 2939 |
. . . . . . . . . . . . 13
|
| 7 | 3, 6 | sylib 122 |
. . . . . . . . . . . 12
|
| 8 | 7 | simprd 114 |
. . . . . . . . . . 11
|
| 9 | eleq1w 2270 |
. . . . . . . . . . . 12
| |
| 10 | 9 | cbvexv 1945 |
. . . . . . . . . . 11
|
| 11 | 8, 10 | sylib 122 |
. . . . . . . . . 10
|
| 12 | rexv 2798 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | sylibr 134 |
. . . . . . . . 9
|
| 14 | 13 | ralrimiva 2583 |
. . . . . . . 8
|
| 15 | 2, 14 | syl 14 |
. . . . . . 7
|
| 16 | eleq1 2272 |
. . . . . . . 8
| |
| 17 | 16 | ac6sfi 7028 |
. . . . . . 7
|
| 18 | 15, 17 | syldan 282 |
. . . . . 6
|
| 19 | exsimpr 1644 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 20 | ralrimiva 2583 |
. . . 4
|
| 22 | vex 2782 |
. . . . 5
| |
| 23 | isacnm 7353 |
. . . . 5
| |
| 24 | 22, 23 | mpan 424 |
. . . 4
|
| 25 | 21, 24 | mpbird 167 |
. . 3
|
| 26 | 22 | a1i 9 |
. . 3
|
| 27 | 25, 26 | 2thd 175 |
. 2
|
| 28 | 27 | eqrdv 2207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-er 6650 df-map 6767 df-en 6858 df-fin 6860 df-acnm 7320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |