ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acnccim Unicode version

Theorem acnccim 7426
Description: Given countable choice, every set has choice sets of length  om. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnccim  |-  (CCHOICE  -> AC  om  =  _V )

Proof of Theorem acnccim
Dummy variables  f  g  j  y  z  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( (CCHOICE  /\  f  e.  ( {
z  e.  ~P x  |  E. j  j  e.  z }  ^m  om ) )  -> CCHOICE )
2 elmapfn 6788 . . . . . . . 8  |-  ( f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  om )  ->  f  Fn  om )
32adantl 277 . . . . . . 7  |-  ( (CCHOICE  /\  f  e.  ( {
z  e.  ~P x  |  E. j  j  e.  z }  ^m  om ) )  ->  f  Fn  om )
4 elmapi 6787 . . . . . . . . . . . 12  |-  ( f  e.  ( { z  e.  ~P x  |  E. j  j  e.  z }  ^m  om )  ->  f : om --> { z  e.  ~P x  |  E. j 
j  e.  z } )
54ad2antlr 489 . . . . . . . . . . 11  |-  ( ( (CCHOICE 
/\  f  e.  ( { z  e.  ~P x  |  E. j 
j  e.  z }  ^m  om ) )  /\  n  e.  om )  ->  f : om --> { z  e.  ~P x  |  E. j 
j  e.  z } )
6 simpr 110 . . . . . . . . . . 11  |-  ( ( (CCHOICE 
/\  f  e.  ( { z  e.  ~P x  |  E. j 
j  e.  z }  ^m  om ) )  /\  n  e.  om )  ->  n  e.  om )
75, 6ffvelcdmd 5744 . . . . . . . . . 10  |-  ( ( (CCHOICE 
/\  f  e.  ( { z  e.  ~P x  |  E. j 
j  e.  z }  ^m  om ) )  /\  n  e.  om )  ->  ( f `  n )  e.  {
z  e.  ~P x  |  E. j  j  e.  z } )
8 eleq2 2273 . . . . . . . . . . . 12  |-  ( z  =  ( f `  n )  ->  (
j  e.  z  <->  j  e.  ( f `  n
) ) )
98exbidv 1851 . . . . . . . . . . 11  |-  ( z  =  ( f `  n )  ->  ( E. j  j  e.  z 
<->  E. j  j  e.  ( f `  n
) ) )
109elrab 2939 . . . . . . . . . 10  |-  ( ( f `  n )  e.  { z  e. 
~P x  |  E. j  j  e.  z } 
<->  ( ( f `  n )  e.  ~P x  /\  E. j  j  e.  ( f `  n ) ) )
117, 10sylib 122 . . . . . . . . 9  |-  ( ( (CCHOICE 
/\  f  e.  ( { z  e.  ~P x  |  E. j 
j  e.  z }  ^m  om ) )  /\  n  e.  om )  ->  ( ( f `
 n )  e. 
~P x  /\  E. j  j  e.  (
f `  n )
) )
1211simprd 114 . . . . . . . 8  |-  ( ( (CCHOICE 
/\  f  e.  ( { z  e.  ~P x  |  E. j 
j  e.  z }  ^m  om ) )  /\  n  e.  om )  ->  E. j  j  e.  ( f `  n
) )
1312ralrimiva 2583 . . . . . . 7  |-  ( (CCHOICE  /\  f  e.  ( {
z  e.  ~P x  |  E. j  j  e.  z }  ^m  om ) )  ->  A. n  e.  om  E. j  j  e.  ( f `  n ) )
141, 3, 13cc2 7421 . . . . . 6  |-  ( (CCHOICE  /\  f  e.  ( {
z  e.  ~P x  |  E. j  j  e.  z }  ^m  om ) )  ->  E. g
( g  Fn  om  /\ 
A. y  e.  om  ( g `  y
)  e.  ( f `
 y ) ) )
15 exsimpr 1644 . . . . . 6  |-  ( E. g ( g  Fn 
om  /\  A. y  e.  om  ( g `  y )  e.  ( f `  y ) )  ->  E. g A. y  e.  om  ( g `  y
)  e.  ( f `
 y ) )
1614, 15syl 14 . . . . 5  |-  ( (CCHOICE  /\  f  e.  ( {
z  e.  ~P x  |  E. j  j  e.  z }  ^m  om ) )  ->  E. g A. y  e.  om  ( g `  y
)  e.  ( f `
 y ) )
1716ralrimiva 2583 . . . 4  |-  (CCHOICE  ->  A. f  e.  ( { z  e. 
~P x  |  E. j  j  e.  z }  ^m  om ) E. g A. y  e. 
om  ( g `  y )  e.  ( f `  y ) )
18 vex 2782 . . . . 5  |-  x  e. 
_V
19 omex 4662 . . . . 5  |-  om  e.  _V
20 isacnm 7353 . . . . 5  |-  ( ( x  e.  _V  /\  om  e.  _V )  -> 
( x  e. AC  om  <->  A. f  e.  ( { z  e. 
~P x  |  E. j  j  e.  z }  ^m  om ) E. g A. y  e. 
om  ( g `  y )  e.  ( f `  y ) ) )
2118, 19, 20mp2an 426 . . . 4  |-  ( x  e. AC  om  <->  A. f  e.  ( { z  e.  ~P x  |  E. j 
j  e.  z }  ^m  om ) E. g A. y  e. 
om  ( g `  y )  e.  ( f `  y ) )
2217, 21sylibr 134 . . 3  |-  (CCHOICE  ->  x  e. AC 
om )
2318a1i 9 . . 3  |-  (CCHOICE  ->  x  e.  _V )
2422, 232thd 175 . 2  |-  (CCHOICE  ->  (
x  e. AC  om  <->  x  e.  _V ) )
2524eqrdv 2207 1  |-  (CCHOICE  -> AC  om  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375   E.wex 1518    e. wcel 2180   A.wral 2488   {crab 2492   _Vcvv 2779   ~Pcpw 3629   omcom 4659    Fn wfn 5289   -->wf 5290   ` cfv 5294  (class class class)co 5974    ^m cmap 6765  AC wacn 7318  CCHOICEwacc 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-2nd 6257  df-er 6650  df-map 6767  df-en 6858  df-acnm 7320  df-cc 7417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator