ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  finnum Unicode version

Theorem finnum 7316
Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
finnum  |-  ( A  e.  Fin  ->  A  e.  dom  card )

Proof of Theorem finnum
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfi 6875 . 2  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 nnon 4676 . . . 4  |-  ( x  e.  om  ->  x  e.  On )
3 ensym 6896 . . . 4  |-  ( A 
~~  x  ->  x  ~~  A )
4 isnumi 7315 . . . 4  |-  ( ( x  e.  On  /\  x  ~~  A )  ->  A  e.  dom  card )
52, 3, 4syl2an 289 . . 3  |-  ( ( x  e.  om  /\  A  ~~  x )  ->  A  e.  dom  card )
65rexlimiva 2620 . 2  |-  ( E. x  e.  om  A  ~~  x  ->  A  e. 
dom  card )
71, 6sylbi 121 1  |-  ( A  e.  Fin  ->  A  e.  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   E.wrex 2487   class class class wbr 4059   Oncon0 4428   omcom 4656   dom cdm 4693    ~~ cen 6848   Fincfn 6850   cardccrd 7310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-er 6643  df-en 6851  df-fin 6853  df-card 7312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator