ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metres Unicode version

Theorem metres 14703
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )

Proof of Theorem metres
StepHypRef Expression
1 metf 14671 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 fdm 5416 . . 3  |-  ( D : ( X  X.  X ) --> RR  ->  dom 
D  =  ( X  X.  X ) )
3 metreslem 14700 . . 3  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
41, 2, 33syl 17 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) ) )
5 inss1 3384 . . 3  |-  ( X  i^i  R )  C_  X
6 metres2 14701 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( X  i^i  R )  C_  X )  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )  e.  ( Met `  ( X  i^i  R ) ) )
75, 6mpan2 425 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) )  e.  ( Met `  ( X  i^i  R
) ) )
84, 7eqeltrd 2273 1  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    i^i cin 3156    C_ wss 3157    X. cxp 4662   dom cdm 4664    |` cres 4666   -->wf 5255   ` cfv 5259   RRcr 7895   Metcmet 14169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-rnegex 8005
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-xadd 9865  df-xmet 14176  df-met 14177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator