ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metres Unicode version

Theorem metres 14970
Description: A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metres  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )

Proof of Theorem metres
StepHypRef Expression
1 metf 14938 . . 3  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 fdm 5451 . . 3  |-  ( D : ( X  X.  X ) --> RR  ->  dom 
D  =  ( X  X.  X ) )
3 metreslem 14967 . . 3  |-  ( dom 
D  =  ( X  X.  X )  -> 
( D  |`  ( R  X.  R ) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) ) )
41, 2, 33syl 17 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  =  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) ) )
5 inss1 3401 . . 3  |-  ( X  i^i  R )  C_  X
6 metres2 14968 . . 3  |-  ( ( D  e.  ( Met `  X )  /\  ( X  i^i  R )  C_  X )  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R
) ) )  e.  ( Met `  ( X  i^i  R ) ) )
75, 6mpan2 425 . 2  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( ( X  i^i  R )  X.  ( X  i^i  R ) ) )  e.  ( Met `  ( X  i^i  R
) ) )
84, 7eqeltrd 2284 1  |-  ( D  e.  ( Met `  X
)  ->  ( D  |`  ( R  X.  R
) )  e.  ( Met `  ( X  i^i  R ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    i^i cin 3173    C_ wss 3174    X. cxp 4691   dom cdm 4693    |` cres 4695   -->wf 5286   ` cfv 5290   RRcr 7959   Metcmet 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-xadd 9930  df-xmet 14421  df-met 14422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator