ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opifismgmdc Unicode version

Theorem opifismgmdc 12625
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b  |-  B  =  ( Base `  M
)
opifismgm.p  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
opifismgmdc.dc  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
opifismgm.m  |-  ( ph  ->  E. x  x  e.  B )
opifismgm.c  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
opifismgm.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
Assertion
Ref Expression
opifismgmdc  |-  ( ph  ->  M  e. Mgm )
Distinct variable groups:    x, B, y   
x, M    ph, x, y
Allowed substitution hints:    ps( x, y)    C( x, y)    D( x, y)    M( y)

Proof of Theorem opifismgmdc
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
2 opifismgm.d . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
3 opifismgmdc.dc . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
41, 2, 3ifcldcd 3561 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  if ( ps ,  C ,  D )  e.  B
)
54ralrimivva 2552 . . . . 5  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
65adantr 274 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
7 simprl 526 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
a  e.  B )
8 simprr 527 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
b  e.  B )
9 opifismgm.p . . . . 5  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
109ovmpoelrn 6186 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B  /\  a  e.  B  /\  b  e.  B
)  ->  ( a
( +g  `  M ) b )  e.  B
)
116, 7, 8, 10syl3anc 1233 . . 3  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a ( +g  `  M ) b )  e.  B )
1211ralrimivva 2552 . 2  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B )
13 opifismgm.m . . 3  |-  ( ph  ->  E. x  x  e.  B )
14 opifismgm.b . . . . 5  |-  B  =  ( Base `  M
)
15 eqid 2170 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
1614, 15ismgmn0 12612 . . . 4  |-  ( x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )
1716exlimiv 1591 . . 3  |-  ( E. x  x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1813, 17syl 14 . 2  |-  ( ph  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1912, 18mpbird 166 1  |-  ( ph  ->  M  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   ifcif 3526   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   Basecbs 12416   +g cplusg 12480  Mgmcmgm 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mgm 12610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator