ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opifismgmdc Unicode version

Theorem opifismgmdc 13404
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b  |-  B  =  ( Base `  M
)
opifismgm.p  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
opifismgmdc.dc  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
opifismgm.m  |-  ( ph  ->  E. x  x  e.  B )
opifismgm.c  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
opifismgm.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
Assertion
Ref Expression
opifismgmdc  |-  ( ph  ->  M  e. Mgm )
Distinct variable groups:    x, B, y   
x, M    ph, x, y
Allowed substitution hints:    ps( x, y)    C( x, y)    D( x, y)    M( y)

Proof of Theorem opifismgmdc
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
2 opifismgm.d . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
3 opifismgmdc.dc . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
41, 2, 3ifcldcd 3640 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  if ( ps ,  C ,  D )  e.  B
)
54ralrimivva 2612 . . . . 5  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
65adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
7 simprl 529 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
a  e.  B )
8 simprr 531 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
b  e.  B )
9 opifismgm.p . . . . 5  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
109ovmpoelrn 6353 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B  /\  a  e.  B  /\  b  e.  B
)  ->  ( a
( +g  `  M ) b )  e.  B
)
116, 7, 8, 10syl3anc 1271 . . 3  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a ( +g  `  M ) b )  e.  B )
1211ralrimivva 2612 . 2  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B )
13 opifismgm.m . . 3  |-  ( ph  ->  E. x  x  e.  B )
14 opifismgm.b . . . . 5  |-  B  =  ( Base `  M
)
15 eqid 2229 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
1614, 15ismgmn0 13391 . . . 4  |-  ( x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )
1716exlimiv 1644 . . 3  |-  ( E. x  x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1813, 17syl 14 . 2  |-  ( ph  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1912, 18mpbird 167 1  |-  ( ph  ->  M  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   ifcif 3602   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   Basecbs 13032   +g cplusg 13110  Mgmcmgm 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mgm 13389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator