ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opifismgmdc Unicode version

Theorem opifismgmdc 13073
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b  |-  B  =  ( Base `  M
)
opifismgm.p  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
opifismgmdc.dc  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
opifismgm.m  |-  ( ph  ->  E. x  x  e.  B )
opifismgm.c  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
opifismgm.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
Assertion
Ref Expression
opifismgmdc  |-  ( ph  ->  M  e. Mgm )
Distinct variable groups:    x, B, y   
x, M    ph, x, y
Allowed substitution hints:    ps( x, y)    C( x, y)    D( x, y)    M( y)

Proof of Theorem opifismgmdc
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
2 opifismgm.d . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
3 opifismgmdc.dc . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
41, 2, 3ifcldcd 3598 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  if ( ps ,  C ,  D )  e.  B
)
54ralrimivva 2579 . . . . 5  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
65adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
7 simprl 529 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
a  e.  B )
8 simprr 531 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
b  e.  B )
9 opifismgm.p . . . . 5  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
109ovmpoelrn 6274 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B  /\  a  e.  B  /\  b  e.  B
)  ->  ( a
( +g  `  M ) b )  e.  B
)
116, 7, 8, 10syl3anc 1249 . . 3  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a ( +g  `  M ) b )  e.  B )
1211ralrimivva 2579 . 2  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B )
13 opifismgm.m . . 3  |-  ( ph  ->  E. x  x  e.  B )
14 opifismgm.b . . . . 5  |-  B  =  ( Base `  M
)
15 eqid 2196 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
1614, 15ismgmn0 13060 . . . 4  |-  ( x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )
1716exlimiv 1612 . . 3  |-  ( E. x  x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1813, 17syl 14 . 2  |-  ( ph  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1912, 18mpbird 167 1  |-  ( ph  ->  M  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   ifcif 3562   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   Basecbs 12703   +g cplusg 12780  Mgmcmgm 13056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator