ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opifismgmdc Unicode version

Theorem opifismgmdc 13236
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b  |-  B  =  ( Base `  M
)
opifismgm.p  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
opifismgmdc.dc  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
opifismgm.m  |-  ( ph  ->  E. x  x  e.  B )
opifismgm.c  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
opifismgm.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
Assertion
Ref Expression
opifismgmdc  |-  ( ph  ->  M  e. Mgm )
Distinct variable groups:    x, B, y   
x, M    ph, x, y
Allowed substitution hints:    ps( x, y)    C( x, y)    D( x, y)    M( y)

Proof of Theorem opifismgmdc
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
2 opifismgm.d . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
3 opifismgmdc.dc . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
41, 2, 3ifcldcd 3608 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  if ( ps ,  C ,  D )  e.  B
)
54ralrimivva 2588 . . . . 5  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
65adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
7 simprl 529 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
a  e.  B )
8 simprr 531 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
b  e.  B )
9 opifismgm.p . . . . 5  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
109ovmpoelrn 6295 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B  /\  a  e.  B  /\  b  e.  B
)  ->  ( a
( +g  `  M ) b )  e.  B
)
116, 7, 8, 10syl3anc 1250 . . 3  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a ( +g  `  M ) b )  e.  B )
1211ralrimivva 2588 . 2  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B )
13 opifismgm.m . . 3  |-  ( ph  ->  E. x  x  e.  B )
14 opifismgm.b . . . . 5  |-  B  =  ( Base `  M
)
15 eqid 2205 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
1614, 15ismgmn0 13223 . . . 4  |-  ( x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )
1716exlimiv 1621 . . 3  |-  ( E. x  x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1813, 17syl 14 . 2  |-  ( ph  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1912, 18mpbird 167 1  |-  ( ph  ->  M  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   ifcif 3571   ` cfv 5272  (class class class)co 5946    e. cmpo 5948   Basecbs 12865   +g cplusg 12942  Mgmcmgm 13219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-inn 9039  df-2 9097  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-mgm 13221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator