ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opifismgmdc Unicode version

Theorem opifismgmdc 12954
Description: A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
Hypotheses
Ref Expression
opifismgm.b  |-  B  =  ( Base `  M
)
opifismgm.p  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
opifismgmdc.dc  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
opifismgm.m  |-  ( ph  ->  E. x  x  e.  B )
opifismgm.c  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
opifismgm.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
Assertion
Ref Expression
opifismgmdc  |-  ( ph  ->  M  e. Mgm )
Distinct variable groups:    x, B, y   
x, M    ph, x, y
Allowed substitution hints:    ps( x, y)    C( x, y)    D( x, y)    M( y)

Proof of Theorem opifismgmdc
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opifismgm.c . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  C  e.  B )
2 opifismgm.d . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  D  e.  B )
3 opifismgmdc.dc . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> DECID  ps )
41, 2, 3ifcldcd 3593 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  if ( ps ,  C ,  D )  e.  B
)
54ralrimivva 2576 . . . . 5  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
65adantr 276 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  ->  A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B
)
7 simprl 529 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
a  e.  B )
8 simprr 531 . . . 4  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
b  e.  B )
9 opifismgm.p . . . . 5  |-  ( +g  `  M )  =  ( x  e.  B , 
y  e.  B  |->  if ( ps ,  C ,  D ) )
109ovmpoelrn 6260 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  if ( ps ,  C ,  D )  e.  B  /\  a  e.  B  /\  b  e.  B
)  ->  ( a
( +g  `  M ) b )  e.  B
)
116, 7, 8, 10syl3anc 1249 . . 3  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a ( +g  `  M ) b )  e.  B )
1211ralrimivva 2576 . 2  |-  ( ph  ->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B )
13 opifismgm.m . . 3  |-  ( ph  ->  E. x  x  e.  B )
14 opifismgm.b . . . . 5  |-  B  =  ( Base `  M
)
15 eqid 2193 . . . . 5  |-  ( +g  `  M )  =  ( +g  `  M )
1614, 15ismgmn0 12941 . . . 4  |-  ( x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a ( +g  `  M ) b )  e.  B ) )
1716exlimiv 1609 . . 3  |-  ( E. x  x  e.  B  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1813, 17syl 14 . 2  |-  ( ph  ->  ( M  e. Mgm  <->  A. a  e.  B  A. b  e.  B  ( a
( +g  `  M ) b )  e.  B
) )
1912, 18mpbird 167 1  |-  ( ph  ->  M  e. Mgm )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   ifcif 3557   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   Basecbs 12618   +g cplusg 12695  Mgmcmgm 12937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mgm 12939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator