| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidvalg | Unicode version | ||
| Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpidval.b |
|
| grpidval.p |
|
| grpidval.o |
|
| Ref | Expression |
|---|---|
| grpidvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidval.o |
. 2
| |
| 2 | df-0g 13286 |
. . 3
| |
| 3 | fveq2 5626 |
. . . . . . 7
| |
| 4 | grpidval.b |
. . . . . . 7
| |
| 5 | 3, 4 | eqtr4di 2280 |
. . . . . 6
|
| 6 | 5 | eleq2d 2299 |
. . . . 5
|
| 7 | fveq2 5626 |
. . . . . . . . . 10
| |
| 8 | grpidval.p |
. . . . . . . . . 10
| |
| 9 | 7, 8 | eqtr4di 2280 |
. . . . . . . . 9
|
| 10 | 9 | oveqd 6017 |
. . . . . . . 8
|
| 11 | 10 | eqeq1d 2238 |
. . . . . . 7
|
| 12 | 9 | oveqd 6017 |
. . . . . . . 8
|
| 13 | 12 | eqeq1d 2238 |
. . . . . . 7
|
| 14 | 11, 13 | anbi12d 473 |
. . . . . 6
|
| 15 | 5, 14 | raleqbidv 2744 |
. . . . 5
|
| 16 | 6, 15 | anbi12d 473 |
. . . 4
|
| 17 | 16 | iotabidv 5300 |
. . 3
|
| 18 | elex 2811 |
. . 3
| |
| 19 | df-riota 5953 |
. . . 4
| |
| 20 | basfn 13086 |
. . . . . . 7
| |
| 21 | funfvex 5643 |
. . . . . . . 8
| |
| 22 | 21 | funfni 5422 |
. . . . . . 7
|
| 23 | 20, 18, 22 | sylancr 414 |
. . . . . 6
|
| 24 | 4, 23 | eqeltrid 2316 |
. . . . 5
|
| 25 | riotaexg 5957 |
. . . . 5
| |
| 26 | 24, 25 | syl 14 |
. . . 4
|
| 27 | 19, 26 | eqeltrrid 2317 |
. . 3
|
| 28 | 2, 17, 18, 27 | fvmptd3 5727 |
. 2
|
| 29 | 1, 28 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-0g 13286 |
| This theorem is referenced by: grpidpropdg 13402 0g0 13404 ismgmid 13405 sgrpidmndm 13448 dfur2g 13920 oppr0g 14039 oppr1g 14040 |
| Copyright terms: Public domain | W3C validator |