ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg Unicode version

Theorem grpidvalg 13401
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b  |-  B  =  ( Base `  G
)
grpidval.p  |-  .+  =  ( +g  `  G )
grpidval.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidvalg  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B   
e, G, x
Allowed substitution hints:    .+ ( x, e)    V( x, e)    .0. ( x, e)

Proof of Theorem grpidvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2  |-  .0.  =  ( 0g `  G )
2 df-0g 13286 . . 3  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
3 fveq2 5626 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpidval.b . . . . . . 7  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2280 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
65eleq2d 2299 . . . . 5  |-  ( g  =  G  ->  (
e  e.  ( Base `  g )  <->  e  e.  B ) )
7 fveq2 5626 . . . . . . . . . 10  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
8 grpidval.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
97, 8eqtr4di 2280 . . . . . . . . 9  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
109oveqd 6017 . . . . . . . 8  |-  ( g  =  G  ->  (
e ( +g  `  g
) x )  =  ( e  .+  x
) )
1110eqeq1d 2238 . . . . . . 7  |-  ( g  =  G  ->  (
( e ( +g  `  g ) x )  =  x  <->  ( e  .+  x )  =  x ) )
129oveqd 6017 . . . . . . . 8  |-  ( g  =  G  ->  (
x ( +g  `  g
) e )  =  ( x  .+  e
) )
1312eqeq1d 2238 . . . . . . 7  |-  ( g  =  G  ->  (
( x ( +g  `  g ) e )  =  x  <->  ( x  .+  e )  =  x ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( g  =  G  ->  (
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x )  <->  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) ) )
155, 14raleqbidv 2744 . . . . 5  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  (
x ( +g  `  g
) e )  =  x )  <->  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )
166, 15anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
1716iotabidv 5300 . . 3  |-  ( g  =  G  ->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
18 elex 2811 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
19 df-riota 5953 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
20 basfn 13086 . . . . . . 7  |-  Base  Fn  _V
21 funfvex 5643 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2221funfni 5422 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2320, 18, 22sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
244, 23eqeltrid 2316 . . . . 5  |-  ( G  e.  V  ->  B  e.  _V )
25 riotaexg 5957 . . . . 5  |-  ( B  e.  _V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2624, 25syl 14 . . . 4  |-  ( G  e.  V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2719, 26eqeltrrid 2317 . . 3  |-  ( G  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )  e.  _V )
282, 17, 18, 27fvmptd3 5727 . 2  |-  ( G  e.  V  ->  ( 0g `  G )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) ) )
291, 28eqtrid 2274 1  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   iotacio 5275    Fn wfn 5312   ` cfv 5317   iota_crio 5952  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286
This theorem is referenced by:  grpidpropdg  13402  0g0  13404  ismgmid  13405  sgrpidmndm  13448  dfur2g  13920  oppr0g  14039  oppr1g  14040
  Copyright terms: Public domain W3C validator