| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidvalg | Unicode version | ||
| Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| grpidval.b |
|
| grpidval.p |
|
| grpidval.o |
|
| Ref | Expression |
|---|---|
| grpidvalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidval.o |
. 2
| |
| 2 | df-0g 12960 |
. . 3
| |
| 3 | fveq2 5561 |
. . . . . . 7
| |
| 4 | grpidval.b |
. . . . . . 7
| |
| 5 | 3, 4 | eqtr4di 2247 |
. . . . . 6
|
| 6 | 5 | eleq2d 2266 |
. . . . 5
|
| 7 | fveq2 5561 |
. . . . . . . . . 10
| |
| 8 | grpidval.p |
. . . . . . . . . 10
| |
| 9 | 7, 8 | eqtr4di 2247 |
. . . . . . . . 9
|
| 10 | 9 | oveqd 5942 |
. . . . . . . 8
|
| 11 | 10 | eqeq1d 2205 |
. . . . . . 7
|
| 12 | 9 | oveqd 5942 |
. . . . . . . 8
|
| 13 | 12 | eqeq1d 2205 |
. . . . . . 7
|
| 14 | 11, 13 | anbi12d 473 |
. . . . . 6
|
| 15 | 5, 14 | raleqbidv 2709 |
. . . . 5
|
| 16 | 6, 15 | anbi12d 473 |
. . . 4
|
| 17 | 16 | iotabidv 5242 |
. . 3
|
| 18 | elex 2774 |
. . 3
| |
| 19 | df-riota 5880 |
. . . 4
| |
| 20 | basfn 12761 |
. . . . . . 7
| |
| 21 | funfvex 5578 |
. . . . . . . 8
| |
| 22 | 21 | funfni 5361 |
. . . . . . 7
|
| 23 | 20, 18, 22 | sylancr 414 |
. . . . . 6
|
| 24 | 4, 23 | eqeltrid 2283 |
. . . . 5
|
| 25 | riotaexg 5884 |
. . . . 5
| |
| 26 | 24, 25 | syl 14 |
. . . 4
|
| 27 | 19, 26 | eqeltrrid 2284 |
. . 3
|
| 28 | 2, 17, 18, 27 | fvmptd3 5658 |
. 2
|
| 29 | 1, 28 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-0g 12960 |
| This theorem is referenced by: grpidpropdg 13076 0g0 13078 ismgmid 13079 sgrpidmndm 13122 dfur2g 13594 oppr0g 13713 oppr1g 13714 |
| Copyright terms: Public domain | W3C validator |