Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpidvalg | Unicode version |
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
grpidval.b | |
grpidval.p | |
grpidval.o |
Ref | Expression |
---|---|
grpidvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidval.o | . 2 | |
2 | df-0g 12629 | . . 3 | |
3 | fveq2 5507 | . . . . . . 7 | |
4 | grpidval.b | . . . . . . 7 | |
5 | 3, 4 | eqtr4di 2226 | . . . . . 6 |
6 | 5 | eleq2d 2245 | . . . . 5 |
7 | fveq2 5507 | . . . . . . . . . 10 | |
8 | grpidval.p | . . . . . . . . . 10 | |
9 | 7, 8 | eqtr4di 2226 | . . . . . . . . 9 |
10 | 9 | oveqd 5882 | . . . . . . . 8 |
11 | 10 | eqeq1d 2184 | . . . . . . 7 |
12 | 9 | oveqd 5882 | . . . . . . . 8 |
13 | 12 | eqeq1d 2184 | . . . . . . 7 |
14 | 11, 13 | anbi12d 473 | . . . . . 6 |
15 | 5, 14 | raleqbidv 2682 | . . . . 5 |
16 | 6, 15 | anbi12d 473 | . . . 4 |
17 | 16 | iotabidv 5191 | . . 3 |
18 | elex 2746 | . . 3 | |
19 | df-riota 5821 | . . . 4 | |
20 | basfn 12486 | . . . . . . 7 | |
21 | funfvex 5524 | . . . . . . . 8 | |
22 | 21 | funfni 5308 | . . . . . . 7 |
23 | 20, 18, 22 | sylancr 414 | . . . . . 6 |
24 | 4, 23 | eqeltrid 2262 | . . . . 5 |
25 | riotaexg 5825 | . . . . 5 | |
26 | 24, 25 | syl 14 | . . . 4 |
27 | 19, 26 | eqeltrrid 2263 | . . 3 |
28 | 2, 17, 18, 27 | fvmptd3 5601 | . 2 |
29 | 1, 28 | eqtrid 2220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wral 2453 cvv 2735 cio 5168 wfn 5203 cfv 5208 crio 5820 (class class class)co 5865 cbs 12429 cplusg 12493 c0g 12627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8893 df-ndx 12432 df-slot 12433 df-base 12435 df-0g 12629 |
This theorem is referenced by: grpidpropdg 12659 0g0 12661 ismgmid 12662 sgrpidmndm 12687 dfur2g 12942 oppr0g 13046 oppr1g 13047 |
Copyright terms: Public domain | W3C validator |