ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg Unicode version

Theorem grpidvalg 12956
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b  |-  B  =  ( Base `  G
)
grpidval.p  |-  .+  =  ( +g  `  G )
grpidval.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidvalg  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B   
e, G, x
Allowed substitution hints:    .+ ( x, e)    V( x, e)    .0. ( x, e)

Proof of Theorem grpidvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2  |-  .0.  =  ( 0g `  G )
2 df-0g 12869 . . 3  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
3 fveq2 5554 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpidval.b . . . . . . 7  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2244 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
65eleq2d 2263 . . . . 5  |-  ( g  =  G  ->  (
e  e.  ( Base `  g )  <->  e  e.  B ) )
7 fveq2 5554 . . . . . . . . . 10  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
8 grpidval.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
97, 8eqtr4di 2244 . . . . . . . . 9  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
109oveqd 5935 . . . . . . . 8  |-  ( g  =  G  ->  (
e ( +g  `  g
) x )  =  ( e  .+  x
) )
1110eqeq1d 2202 . . . . . . 7  |-  ( g  =  G  ->  (
( e ( +g  `  g ) x )  =  x  <->  ( e  .+  x )  =  x ) )
129oveqd 5935 . . . . . . . 8  |-  ( g  =  G  ->  (
x ( +g  `  g
) e )  =  ( x  .+  e
) )
1312eqeq1d 2202 . . . . . . 7  |-  ( g  =  G  ->  (
( x ( +g  `  g ) e )  =  x  <->  ( x  .+  e )  =  x ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( g  =  G  ->  (
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x )  <->  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) ) )
155, 14raleqbidv 2706 . . . . 5  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  (
x ( +g  `  g
) e )  =  x )  <->  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )
166, 15anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
1716iotabidv 5237 . . 3  |-  ( g  =  G  ->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
18 elex 2771 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
19 df-riota 5873 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
20 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
21 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2221funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2320, 18, 22sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
244, 23eqeltrid 2280 . . . . 5  |-  ( G  e.  V  ->  B  e.  _V )
25 riotaexg 5877 . . . . 5  |-  ( B  e.  _V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2624, 25syl 14 . . . 4  |-  ( G  e.  V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2719, 26eqeltrrid 2281 . . 3  |-  ( G  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )  e.  _V )
282, 17, 18, 27fvmptd3 5651 . 2  |-  ( G  e.  V  ->  ( 0g `  G )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) ) )
291, 28eqtrid 2238 1  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   iotacio 5213    Fn wfn 5249   ` cfv 5254   iota_crio 5872  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869
This theorem is referenced by:  grpidpropdg  12957  0g0  12959  ismgmid  12960  sgrpidmndm  13001  dfur2g  13458  oppr0g  13577  oppr1g  13578
  Copyright terms: Public domain W3C validator