ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg Unicode version

Theorem grpidvalg 13123
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b  |-  B  =  ( Base `  G
)
grpidval.p  |-  .+  =  ( +g  `  G )
grpidval.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidvalg  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B   
e, G, x
Allowed substitution hints:    .+ ( x, e)    V( x, e)    .0. ( x, e)

Proof of Theorem grpidvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2  |-  .0.  =  ( 0g `  G )
2 df-0g 13008 . . 3  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
3 fveq2 5570 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpidval.b . . . . . . 7  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2255 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
65eleq2d 2274 . . . . 5  |-  ( g  =  G  ->  (
e  e.  ( Base `  g )  <->  e  e.  B ) )
7 fveq2 5570 . . . . . . . . . 10  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
8 grpidval.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
97, 8eqtr4di 2255 . . . . . . . . 9  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
109oveqd 5951 . . . . . . . 8  |-  ( g  =  G  ->  (
e ( +g  `  g
) x )  =  ( e  .+  x
) )
1110eqeq1d 2213 . . . . . . 7  |-  ( g  =  G  ->  (
( e ( +g  `  g ) x )  =  x  <->  ( e  .+  x )  =  x ) )
129oveqd 5951 . . . . . . . 8  |-  ( g  =  G  ->  (
x ( +g  `  g
) e )  =  ( x  .+  e
) )
1312eqeq1d 2213 . . . . . . 7  |-  ( g  =  G  ->  (
( x ( +g  `  g ) e )  =  x  <->  ( x  .+  e )  =  x ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( g  =  G  ->  (
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x )  <->  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) ) )
155, 14raleqbidv 2717 . . . . 5  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  (
x ( +g  `  g
) e )  =  x )  <->  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )
166, 15anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
1716iotabidv 5251 . . 3  |-  ( g  =  G  ->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
18 elex 2782 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
19 df-riota 5889 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
20 basfn 12809 . . . . . . 7  |-  Base  Fn  _V
21 funfvex 5587 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2221funfni 5370 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2320, 18, 22sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
244, 23eqeltrid 2291 . . . . 5  |-  ( G  e.  V  ->  B  e.  _V )
25 riotaexg 5893 . . . . 5  |-  ( B  e.  _V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2624, 25syl 14 . . . 4  |-  ( G  e.  V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2719, 26eqeltrrid 2292 . . 3  |-  ( G  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )  e.  _V )
282, 17, 18, 27fvmptd3 5667 . 2  |-  ( G  e.  V  ->  ( 0g `  G )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) ) )
291, 28eqtrid 2249 1  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   A.wral 2483   _Vcvv 2771   iotacio 5227    Fn wfn 5263   ` cfv 5268   iota_crio 5888  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   0gc0g 13006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-riota 5889  df-ov 5937  df-inn 9019  df-ndx 12754  df-slot 12755  df-base 12757  df-0g 13008
This theorem is referenced by:  grpidpropdg  13124  0g0  13126  ismgmid  13127  sgrpidmndm  13170  dfur2g  13642  oppr0g  13761  oppr1g  13762
  Copyright terms: Public domain W3C validator