ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidvalg Unicode version

Theorem grpidvalg 13280
Description: The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpidval.b  |-  B  =  ( Base `  G
)
grpidval.p  |-  .+  =  ( +g  `  G )
grpidval.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidvalg  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Distinct variable groups:    x, e, B   
e, G, x
Allowed substitution hints:    .+ ( x, e)    V( x, e)    .0. ( x, e)

Proof of Theorem grpidvalg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 grpidval.o . 2  |-  .0.  =  ( 0g `  G )
2 df-0g 13165 . . 3  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
3 fveq2 5589 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
4 grpidval.b . . . . . . 7  |-  B  =  ( Base `  G
)
53, 4eqtr4di 2257 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
65eleq2d 2276 . . . . 5  |-  ( g  =  G  ->  (
e  e.  ( Base `  g )  <->  e  e.  B ) )
7 fveq2 5589 . . . . . . . . . 10  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
8 grpidval.p . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
97, 8eqtr4di 2257 . . . . . . . . 9  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
109oveqd 5974 . . . . . . . 8  |-  ( g  =  G  ->  (
e ( +g  `  g
) x )  =  ( e  .+  x
) )
1110eqeq1d 2215 . . . . . . 7  |-  ( g  =  G  ->  (
( e ( +g  `  g ) x )  =  x  <->  ( e  .+  x )  =  x ) )
129oveqd 5974 . . . . . . . 8  |-  ( g  =  G  ->  (
x ( +g  `  g
) e )  =  ( x  .+  e
) )
1312eqeq1d 2215 . . . . . . 7  |-  ( g  =  G  ->  (
( x ( +g  `  g ) e )  =  x  <->  ( x  .+  e )  =  x ) )
1411, 13anbi12d 473 . . . . . 6  |-  ( g  =  G  ->  (
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x )  <->  ( ( e 
.+  x )  =  x  /\  ( x 
.+  e )  =  x ) ) )
155, 14raleqbidv 2719 . . . . 5  |-  ( g  =  G  ->  ( A. x  e.  ( Base `  g ) ( ( e ( +g  `  g ) x )  =  x  /\  (
x ( +g  `  g
) e )  =  x )  <->  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )
166, 15anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( e  e.  (
Base `  g )  /\  A. x  e.  (
Base `  g )
( ( e ( +g  `  g ) x )  =  x  /\  ( x ( +g  `  g ) e )  =  x ) )  <->  ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) ) )
1716iotabidv 5263 . . 3  |-  ( g  =  G  ->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
18 elex 2785 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
19 df-riota 5912 . . . 4  |-  ( iota_ e  e.  B  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) )
20 basfn 12965 . . . . . . 7  |-  Base  Fn  _V
21 funfvex 5606 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
2221funfni 5385 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
2320, 18, 22sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
244, 23eqeltrid 2293 . . . . 5  |-  ( G  e.  V  ->  B  e.  _V )
25 riotaexg 5916 . . . . 5  |-  ( B  e.  _V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2624, 25syl 14 . . . 4  |-  ( G  e.  V  ->  ( iota_ e  e.  B  A. x  e.  B  (
( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) )  e.  _V )
2719, 26eqeltrrid 2294 . . 3  |-  ( G  e.  V  ->  ( iota e ( e  e.  B  /\  A. x  e.  B  ( (
e  .+  x )  =  x  /\  (
x  .+  e )  =  x ) ) )  e.  _V )
282, 17, 18, 27fvmptd3 5686 . 2  |-  ( G  e.  V  ->  ( 0g `  G )  =  ( iota e ( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x
)  =  x  /\  ( x  .+  e )  =  x ) ) ) )
291, 28eqtrid 2251 1  |-  ( G  e.  V  ->  .0.  =  ( iota e
( e  e.  B  /\  A. x  e.  B  ( ( e  .+  x )  =  x  /\  ( x  .+  e )  =  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   iotacio 5239    Fn wfn 5275   ` cfv 5280   iota_crio 5911  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-0g 13165
This theorem is referenced by:  grpidpropdg  13281  0g0  13283  ismgmid  13284  sgrpidmndm  13327  dfur2g  13799  oppr0g  13918  oppr1g  13919
  Copyright terms: Public domain W3C validator