| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > algcvg | Unicode version | ||
| Description: One way to prove that an
algorithm halts is to construct a countdown
function
If |
| Ref | Expression |
|---|---|
| algcvg.1 |
|
| algcvg.2 |
|
| algcvg.3 |
|
| algcvg.4 |
|
| algcvg.5 |
|
| Ref | Expression |
|---|---|
| algcvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 9745 |
. . . 4
| |
| 2 | algcvg.2 |
. . . 4
| |
| 3 | 0zd 9446 |
. . . 4
| |
| 4 | id 19 |
. . . 4
| |
| 5 | algcvg.1 |
. . . . 5
| |
| 6 | 5 | a1i 9 |
. . . 4
|
| 7 | 1, 2, 3, 4, 6 | algrf 12553 |
. . 3
|
| 8 | algcvg.5 |
. . . 4
| |
| 9 | algcvg.3 |
. . . . 5
| |
| 10 | 9 | ffvelcdmi 5762 |
. . . 4
|
| 11 | 8, 10 | eqeltrid 2316 |
. . 3
|
| 12 | fvco3 5698 |
. . 3
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. 2
|
| 14 | fco 5485 |
. . . 4
| |
| 15 | 9, 7, 14 | sylancr 414 |
. . 3
|
| 16 | 0nn0 9372 |
. . . . . 6
| |
| 17 | fvco3 5698 |
. . . . . 6
| |
| 18 | 7, 16, 17 | sylancl 413 |
. . . . 5
|
| 19 | 1, 2, 3, 4, 6 | ialgr0 12552 |
. . . . . 6
|
| 20 | 19 | fveq2d 5627 |
. . . . 5
|
| 21 | 18, 20 | eqtrd 2262 |
. . . 4
|
| 22 | 8, 21 | eqtr4id 2281 |
. . 3
|
| 23 | 7 | ffvelcdmda 5763 |
. . . . 5
|
| 24 | 2fveq3 5628 |
. . . . . . . 8
| |
| 25 | 24 | neeq1d 2418 |
. . . . . . 7
|
| 26 | fveq2 5623 |
. . . . . . . 8
| |
| 27 | 24, 26 | breq12d 4095 |
. . . . . . 7
|
| 28 | 25, 27 | imbi12d 234 |
. . . . . 6
|
| 29 | algcvg.4 |
. . . . . 6
| |
| 30 | 28, 29 | vtoclga 2867 |
. . . . 5
|
| 31 | 23, 30 | syl 14 |
. . . 4
|
| 32 | peano2nn0 9397 |
. . . . . . 7
| |
| 33 | fvco3 5698 |
. . . . . . 7
| |
| 34 | 7, 32, 33 | syl2an 289 |
. . . . . 6
|
| 35 | 1, 2, 3, 4, 6 | algrp1 12554 |
. . . . . . 7
|
| 36 | 35 | fveq2d 5627 |
. . . . . 6
|
| 37 | 34, 36 | eqtrd 2262 |
. . . . 5
|
| 38 | 37 | neeq1d 2418 |
. . . 4
|
| 39 | fvco3 5698 |
. . . . . 6
| |
| 40 | 7, 39 | sylan 283 |
. . . . 5
|
| 41 | 37, 40 | breq12d 4095 |
. . . 4
|
| 42 | 31, 38, 41 | 3imtr4d 203 |
. . 3
|
| 43 | 15, 22, 42 | nn0seqcvgd 12549 |
. 2
|
| 44 | 13, 43 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 |
| This theorem is referenced by: algcvga 12559 |
| Copyright terms: Public domain | W3C validator |