ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvg Unicode version

Theorem algcvg 12578
Description: One way to prove that an algorithm halts is to construct a countdown function  C : S --> NN0 whose value is guaranteed to decrease for each iteration of  F until it reaches  0. That is, if  X  e.  S is not a fixed point of  F, then  ( C `  ( F `  X ) )  <  ( C `
 X ).

If  C is a countdown function for algorithm  F, the sequence  ( C `  ( R `  k ) ) reaches  0 after at most  N steps, where  N is the value of  C for the initial state  A. (Contributed by Paul Chapman, 22-Jun-2011.)

Hypotheses
Ref Expression
algcvg.1  |-  F : S
--> S
algcvg.2  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvg.3  |-  C : S
--> NN0
algcvg.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvg.5  |-  N  =  ( C `  A
)
Assertion
Ref Expression
algcvg  |-  ( A  e.  S  ->  ( C `  ( R `  N ) )  =  0 )
Distinct variable groups:    z, C    z, F    z, R    z, S
Allowed substitution hints:    A( z)    N( z)

Proof of Theorem algcvg
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9765 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 algcvg.2 . . . 4  |-  R  =  seq 0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
3 0zd 9466 . . . 4  |-  ( A  e.  S  ->  0  e.  ZZ )
4 id 19 . . . 4  |-  ( A  e.  S  ->  A  e.  S )
5 algcvg.1 . . . . 5  |-  F : S
--> S
65a1i 9 . . . 4  |-  ( A  e.  S  ->  F : S --> S )
71, 2, 3, 4, 6algrf 12575 . . 3  |-  ( A  e.  S  ->  R : NN0 --> S )
8 algcvg.5 . . . 4  |-  N  =  ( C `  A
)
9 algcvg.3 . . . . 5  |-  C : S
--> NN0
109ffvelcdmi 5771 . . . 4  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
118, 10eqeltrid 2316 . . 3  |-  ( A  e.  S  ->  N  e.  NN0 )
12 fvco3 5707 . . 3  |-  ( ( R : NN0 --> S  /\  N  e.  NN0 )  -> 
( ( C  o.  R ) `  N
)  =  ( C `
 ( R `  N ) ) )
137, 11, 12syl2anc 411 . 2  |-  ( A  e.  S  ->  (
( C  o.  R
) `  N )  =  ( C `  ( R `  N ) ) )
14 fco 5491 . . . 4  |-  ( ( C : S --> NN0  /\  R : NN0 --> S )  ->  ( C  o.  R ) : NN0 --> NN0 )
159, 7, 14sylancr 414 . . 3  |-  ( A  e.  S  ->  ( C  o.  R ) : NN0 --> NN0 )
16 0nn0 9392 . . . . . 6  |-  0  e.  NN0
17 fvco3 5707 . . . . . 6  |-  ( ( R : NN0 --> S  /\  0  e.  NN0 )  -> 
( ( C  o.  R ) `  0
)  =  ( C `
 ( R ` 
0 ) ) )
187, 16, 17sylancl 413 . . . . 5  |-  ( A  e.  S  ->  (
( C  o.  R
) `  0 )  =  ( C `  ( R `  0 ) ) )
191, 2, 3, 4, 6ialgr0 12574 . . . . . 6  |-  ( A  e.  S  ->  ( R `  0 )  =  A )
2019fveq2d 5633 . . . . 5  |-  ( A  e.  S  ->  ( C `  ( R `  0 ) )  =  ( C `  A ) )
2118, 20eqtrd 2262 . . . 4  |-  ( A  e.  S  ->  (
( C  o.  R
) `  0 )  =  ( C `  A ) )
228, 21eqtr4id 2281 . . 3  |-  ( A  e.  S  ->  N  =  ( ( C  o.  R ) ` 
0 ) )
237ffvelcdmda 5772 . . . . 5  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
24 2fveq3 5634 . . . . . . . 8  |-  ( z  =  ( R `  k )  ->  ( C `  ( F `  z ) )  =  ( C `  ( F `  ( R `  k ) ) ) )
2524neeq1d 2418 . . . . . . 7  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  =/=  0  <->  ( C `  ( F `  ( R `  k
) ) )  =/=  0 ) )
26 fveq2 5629 . . . . . . . 8  |-  ( z  =  ( R `  k )  ->  ( C `  z )  =  ( C `  ( R `  k ) ) )
2724, 26breq12d 4096 . . . . . . 7  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  <  ( C `  z )  <->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) )
2825, 27imbi12d 234 . . . . . 6  |-  ( z  =  ( R `  k )  ->  (
( ( C `  ( F `  z ) )  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) )  <->  ( ( C `  ( F `  ( R `  k
) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) ) )
29 algcvg.4 . . . . . 6  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
3028, 29vtoclga 2867 . . . . 5  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( F `  ( R `  k ) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k
) ) )  < 
( C `  ( R `  k )
) ) )
3123, 30syl 14 . . . 4  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) ) )
32 peano2nn0 9417 . . . . . . 7  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
33 fvco3 5707 . . . . . . 7  |-  ( ( R : NN0 --> S  /\  ( k  +  1 )  e.  NN0 )  ->  ( ( C  o.  R ) `  (
k  +  1 ) )  =  ( C `
 ( R `  ( k  +  1 ) ) ) )
347, 32, 33syl2an 289 . . . . . 6  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C  o.  R ) `  (
k  +  1 ) )  =  ( C `
 ( R `  ( k  +  1 ) ) ) )
351, 2, 3, 4, 6algrp1 12576 . . . . . . 7  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
3635fveq2d 5633 . . . . . 6  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  ( C `
 ( F `  ( R `  k ) ) ) )
3734, 36eqtrd 2262 . . . . 5  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C  o.  R ) `  (
k  +  1 ) )  =  ( C `
 ( F `  ( R `  k ) ) ) )
3837neeq1d 2418 . . . 4  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( ( C  o.  R ) `  ( k  +  1 ) )  =/=  0  <->  ( C `  ( F `
 ( R `  k ) ) )  =/=  0 ) )
39 fvco3 5707 . . . . . 6  |-  ( ( R : NN0 --> S  /\  k  e.  NN0 )  -> 
( ( C  o.  R ) `  k
)  =  ( C `
 ( R `  k ) ) )
407, 39sylan 283 . . . . 5  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C  o.  R ) `  k
)  =  ( C `
 ( R `  k ) ) )
4137, 40breq12d 4096 . . . 4  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( ( C  o.  R ) `  ( k  +  1 ) )  <  (
( C  o.  R
) `  k )  <->  ( C `  ( F `
 ( R `  k ) ) )  <  ( C `  ( R `  k ) ) ) )
4231, 38, 413imtr4d 203 . . 3  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( ( C  o.  R ) `  ( k  +  1 ) )  =/=  0  ->  ( ( C  o.  R ) `  (
k  +  1 ) )  <  ( ( C  o.  R ) `
 k ) ) )
4315, 22, 42nn0seqcvgd 12571 . 2  |-  ( A  e.  S  ->  (
( C  o.  R
) `  N )  =  0 )
4413, 43eqtr3d 2264 1  |-  ( A  e.  S  ->  ( C `  ( R `  N ) )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   {csn 3666   class class class wbr 4083    X. cxp 4717    o. ccom 4723   -->wf 5314   ` cfv 5318  (class class class)co 6007   1stc1st 6290   0cc0 8007   1c1 8008    + caddc 8010    < clt 8189   NN0cn0 9377    seqcseq 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-seqfrec 10678
This theorem is referenced by:  algcvga  12581
  Copyright terms: Public domain W3C validator