Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvg Unicode version

Theorem algcvg 11740
 Description: One way to prove that an algorithm halts is to construct a countdown function whose value is guaranteed to decrease for each iteration of until it reaches . That is, if is not a fixed point of , then . If is a countdown function for algorithm , the sequence reaches after at most steps, where is the value of for the initial state . (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvg.1
algcvg.2
algcvg.3
algcvg.4
algcvg.5
Assertion
Ref Expression
algcvg
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem algcvg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nn0uz 9372 . . . 4
2 algcvg.2 . . . 4
3 0zd 9078 . . . 4
4 id 19 . . . 4
5 algcvg.1 . . . . 5
65a1i 9 . . . 4
71, 2, 3, 4, 6algrf 11737 . . 3
8 algcvg.5 . . . 4
9 algcvg.3 . . . . 5
109ffvelrni 5554 . . . 4
118, 10eqeltrid 2226 . . 3
12 fvco3 5492 . . 3
137, 11, 12syl2anc 408 . 2
14 fco 5288 . . . 4
159, 7, 14sylancr 410 . . 3
16 0nn0 9004 . . . . . 6
17 fvco3 5492 . . . . . 6
187, 16, 17sylancl 409 . . . . 5
191, 2, 3, 4, 6ialgr0 11736 . . . . . 6
2019fveq2d 5425 . . . . 5
2118, 20eqtrd 2172 . . . 4
2221, 8syl6reqr 2191 . . 3
237ffvelrnda 5555 . . . . 5
24 2fveq3 5426 . . . . . . . 8
2524neeq1d 2326 . . . . . . 7
26 fveq2 5421 . . . . . . . 8
2724, 26breq12d 3942 . . . . . . 7
2825, 27imbi12d 233 . . . . . 6
29 algcvg.4 . . . . . 6
3028, 29vtoclga 2752 . . . . 5
3123, 30syl 14 . . . 4
32 peano2nn0 9029 . . . . . . 7
33 fvco3 5492 . . . . . . 7
347, 32, 33syl2an 287 . . . . . 6
351, 2, 3, 4, 6algrp1 11738 . . . . . . 7
3635fveq2d 5425 . . . . . 6
3734, 36eqtrd 2172 . . . . 5
3837neeq1d 2326 . . . 4
39 fvco3 5492 . . . . . 6
407, 39sylan 281 . . . . 5
4137, 40breq12d 3942 . . . 4
4231, 38, 413imtr4d 202 . . 3
4315, 22, 42nn0seqcvgd 11733 . 2
4413, 43eqtr3d 2174 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1331   wcel 1480   wne 2308  csn 3527   class class class wbr 3929   cxp 4537   ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  c1st 6036  cc0 7632  c1 7633   caddc 7635   clt 7812  cn0 8989   cseq 10230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-seqfrec 10231 This theorem is referenced by:  algcvga  11743
 Copyright terms: Public domain W3C validator