ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0readdcl Unicode version

Theorem nn0readdcl 9167
Description: Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
Assertion
Ref Expression
nn0readdcl  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  RR )

Proof of Theorem nn0readdcl
StepHypRef Expression
1 nn0addcl 9143 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  NN0 )
21nn0red 9162 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2135  (class class class)co 5839   RRcr 7746    + caddc 7750   NN0cn0 9108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146  ax-sep 4097  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-addcom 7847  ax-addass 7849  ax-i2m1 7852  ax-0id 7855  ax-rnegex 7856
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2726  df-un 3118  df-in 3120  df-ss 3127  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-br 3980  df-iota 5150  df-fv 5193  df-ov 5842  df-inn 8852  df-n0 9109
This theorem is referenced by:  difelfznle  10064  facavg  10653
  Copyright terms: Public domain W3C validator