ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0readdcl Unicode version

Theorem nn0readdcl 8642
Description: Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
Assertion
Ref Expression
nn0readdcl  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  RR )

Proof of Theorem nn0readdcl
StepHypRef Expression
1 nn0addcl 8618 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  NN0 )
21nn0red 8637 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  +  B
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1436  (class class class)co 5594   RRcr 7270    + caddc 7274   NN0cn0 8583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-addcom 7366  ax-addass 7368  ax-i2m1 7371  ax-0id 7374  ax-rnegex 7375
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-br 3815  df-iota 4937  df-fv 4980  df-ov 5597  df-inn 8335  df-n0 8584
This theorem is referenced by:  difelfznle  9451  facavg  10003
  Copyright terms: Public domain W3C validator