Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0readdcl | Unicode version |
Description: Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
Ref | Expression |
---|---|
nn0readdcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 9143 | . 2 | |
2 | 1 | nn0red 9162 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2135 (class class class)co 5839 cr 7746 caddc 7750 cn0 9108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 ax-sep 4097 ax-cnex 7838 ax-resscn 7839 ax-1cn 7840 ax-1re 7841 ax-icn 7842 ax-addcl 7843 ax-addrcl 7844 ax-mulcl 7845 ax-addcom 7847 ax-addass 7849 ax-i2m1 7852 ax-0id 7855 ax-rnegex 7856 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-br 3980 df-iota 5150 df-fv 5193 df-ov 5842 df-inn 8852 df-n0 9109 |
This theorem is referenced by: difelfznle 10064 facavg 10653 |
Copyright terms: Public domain | W3C validator |