| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0readdcl | Unicode version | ||
| Description: Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
| Ref | Expression |
|---|---|
| nn0readdcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl 9404 |
. 2
| |
| 2 | 1 | nn0red 9423 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: difelfznle 10331 facavg 10968 swrdswrd 11237 swrdccatin1 11257 |
| Copyright terms: Public domain | W3C validator |