| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0readdcl | GIF version | ||
| Description: Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
| Ref | Expression |
|---|---|
| nn0readdcl | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl 9345 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0) | |
| 2 | 1 | nn0red 9364 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 (class class class)co 5956 ℝcr 7939 + caddc 7943 ℕ0cn0 9310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4169 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0id 8048 ax-rnegex 8049 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-iota 5240 df-fv 5287 df-ov 5959 df-inn 9052 df-n0 9311 |
| This theorem is referenced by: difelfznle 10272 facavg 10908 swrdswrd 11176 |
| Copyright terms: Public domain | W3C validator |