ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0mulcld Unicode version

Theorem nn0mulcld 8641
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1  |-  ( ph  ->  A  e.  NN0 )
nn0addcld.2  |-  ( ph  ->  B  e.  NN0 )
Assertion
Ref Expression
nn0mulcld  |-  ( ph  ->  ( A  x.  B
)  e.  NN0 )

Proof of Theorem nn0mulcld
StepHypRef Expression
1 nn0red.1 . 2  |-  ( ph  ->  A  e.  NN0 )
2 nn0addcld.2 . 2  |-  ( ph  ->  B  e.  NN0 )
3 nn0mulcl 8619 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  x.  B
)  e.  NN0 )
41, 2, 3syl2anc 403 1  |-  ( ph  ->  ( A  x.  B
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1436  (class class class)co 5594    x. cmul 7276   NN0cn0 8583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-addcom 7366  ax-mulcom 7367  ax-addass 7368  ax-mulass 7369  ax-distr 7370  ax-i2m1 7371  ax-1rid 7373  ax-0id 7374  ax-rnegex 7375  ax-cnre 7377
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-br 3815  df-opab 3869  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-iota 4937  df-fun 4974  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-sub 7576  df-inn 8335  df-n0 8584
This theorem is referenced by:  expmulzap  9852  nn0opthlem1d  9977  nn0opthd  9979  oddge22np1  10675  mulgcd  10799  rpmulgcd2  10871  sqpweven  10947  2sqpwodd  10948  hashgcdlem  10997
  Copyright terms: Public domain W3C validator