ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0mulcld Unicode version

Theorem nn0mulcld 9168
Description: Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
nn0red.1  |-  ( ph  ->  A  e.  NN0 )
nn0addcld.2  |-  ( ph  ->  B  e.  NN0 )
Assertion
Ref Expression
nn0mulcld  |-  ( ph  ->  ( A  x.  B
)  e.  NN0 )

Proof of Theorem nn0mulcld
StepHypRef Expression
1 nn0red.1 . 2  |-  ( ph  ->  A  e.  NN0 )
2 nn0addcld.2 . 2  |-  ( ph  ->  B  e.  NN0 )
3 nn0mulcl 9146 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  x.  B
)  e.  NN0 )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( A  x.  B
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136  (class class class)co 5841    x. cmul 7754   NN0cn0 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-setind 4513  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-cnre 7860
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-sub 8067  df-inn 8854  df-n0 9111
This theorem is referenced by:  expmulzap  10497  nn0opthlem1d  10629  nn0opthd  10631  oddge22np1  11814  mulgcd  11945  rpmulgcd2  12023  sqpweven  12103  2sqpwodd  12104  hashgcdlem  12166  odzdvds  12173
  Copyright terms: Public domain W3C validator