Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difelfznle | Unicode version |
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
Ref | Expression |
---|---|
difelfznle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 9996 | . . . . . 6 | |
2 | nn0addcl 9108 | . . . . . . . 8 | |
3 | 2 | nn0zd 9267 | . . . . . . 7 |
4 | 3 | 3adant3 1002 | . . . . . 6 |
5 | 1, 4 | sylbi 120 | . . . . 5 |
6 | elfzelz 9910 | . . . . 5 | |
7 | zsubcl 9191 | . . . . 5 | |
8 | 5, 6, 7 | syl2anr 288 | . . . 4 |
9 | 8 | 3adant3 1002 | . . 3 |
10 | 6 | zred 9269 | . . . . . . 7 |
11 | 10 | adantr 274 | . . . . . 6 |
12 | elfzel2 9908 | . . . . . . . 8 | |
13 | 12 | zred 9269 | . . . . . . 7 |
14 | 13 | adantr 274 | . . . . . 6 |
15 | nn0readdcl 9132 | . . . . . . . . 9 | |
16 | 15 | 3adant3 1002 | . . . . . . . 8 |
17 | 1, 16 | sylbi 120 | . . . . . . 7 |
18 | 17 | adantl 275 | . . . . . 6 |
19 | elfzle2 9912 | . . . . . . 7 | |
20 | elfzle1 9911 | . . . . . . . 8 | |
21 | nn0re 9082 | . . . . . . . . . . . 12 | |
22 | nn0re 9082 | . . . . . . . . . . . 12 | |
23 | 21, 22 | anim12ci 337 | . . . . . . . . . . 11 |
24 | 23 | 3adant3 1002 | . . . . . . . . . 10 |
25 | 1, 24 | sylbi 120 | . . . . . . . . 9 |
26 | addge02 8331 | . . . . . . . . 9 | |
27 | 25, 26 | syl 14 | . . . . . . . 8 |
28 | 20, 27 | mpbid 146 | . . . . . . 7 |
29 | 19, 28 | anim12i 336 | . . . . . 6 |
30 | letr 7943 | . . . . . . 7 | |
31 | 30 | imp 123 | . . . . . 6 |
32 | 11, 14, 18, 29, 31 | syl31anc 1223 | . . . . 5 |
33 | 32 | 3adant3 1002 | . . . 4 |
34 | zre 9154 | . . . . . . . 8 | |
35 | 21, 22 | anim12i 336 | . . . . . . . . . . 11 |
36 | 35 | 3adant3 1002 | . . . . . . . . . 10 |
37 | 1, 36 | sylbi 120 | . . . . . . . . 9 |
38 | readdcl 7841 | . . . . . . . . 9 | |
39 | 37, 38 | syl 14 | . . . . . . . 8 |
40 | 34, 39 | anim12ci 337 | . . . . . . 7 |
41 | 6, 40 | sylan 281 | . . . . . 6 |
42 | 41 | 3adant3 1002 | . . . . 5 |
43 | subge0 8333 | . . . . 5 | |
44 | 42, 43 | syl 14 | . . . 4 |
45 | 33, 44 | mpbird 166 | . . 3 |
46 | elnn0z 9163 | . . 3 | |
47 | 9, 45, 46 | sylanbrc 414 | . 2 |
48 | elfz3nn0 9999 | . . 3 | |
49 | 48 | 3ad2ant1 1003 | . 2 |
50 | elfzelz 9910 | . . . . . 6 | |
51 | zltnle 9196 | . . . . . . . 8 | |
52 | 51 | ancoms 266 | . . . . . . 7 |
53 | zre 9154 | . . . . . . . 8 | |
54 | ltle 7947 | . . . . . . . 8 | |
55 | 53, 34, 54 | syl2anr 288 | . . . . . . 7 |
56 | 52, 55 | sylbird 169 | . . . . . 6 |
57 | 6, 50, 56 | syl2an 287 | . . . . 5 |
58 | 57 | 3impia 1182 | . . . 4 |
59 | 50 | zred 9269 | . . . . . . 7 |
60 | 59 | adantl 275 | . . . . . 6 |
61 | 60, 11, 14 | leadd1d 8397 | . . . . 5 |
62 | 61 | 3adant3 1002 | . . . 4 |
63 | 58, 62 | mpbid 146 | . . 3 |
64 | 18, 11, 14 | lesubadd2d 8402 | . . . 4 |
65 | 64 | 3adant3 1002 | . . 3 |
66 | 63, 65 | mpbird 166 | . 2 |
67 | elfz2nn0 9996 | . 2 | |
68 | 47, 49, 66, 67 | syl3anbrc 1166 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 963 wcel 2128 class class class wbr 3965 (class class class)co 5818 cr 7714 cc0 7715 caddc 7718 clt 7895 cle 7896 cmin 8029 cn0 9073 cz 9150 cfz 9894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 df-uz 9423 df-fz 9895 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |