| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difelfznle | Unicode version | ||
| Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| Ref | Expression |
|---|---|
| difelfznle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10187 |
. . . . . 6
| |
| 2 | nn0addcl 9284 |
. . . . . . . 8
| |
| 3 | 2 | nn0zd 9446 |
. . . . . . 7
|
| 4 | 3 | 3adant3 1019 |
. . . . . 6
|
| 5 | 1, 4 | sylbi 121 |
. . . . 5
|
| 6 | elfzelz 10100 |
. . . . 5
| |
| 7 | zsubcl 9367 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anr 290 |
. . . 4
|
| 9 | 8 | 3adant3 1019 |
. . 3
|
| 10 | 6 | zred 9448 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | elfzel2 10098 |
. . . . . . . 8
| |
| 13 | 12 | zred 9448 |
. . . . . . 7
|
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | nn0readdcl 9308 |
. . . . . . . . 9
| |
| 16 | 15 | 3adant3 1019 |
. . . . . . . 8
|
| 17 | 1, 16 | sylbi 121 |
. . . . . . 7
|
| 18 | 17 | adantl 277 |
. . . . . 6
|
| 19 | elfzle2 10103 |
. . . . . . 7
| |
| 20 | elfzle1 10102 |
. . . . . . . 8
| |
| 21 | nn0re 9258 |
. . . . . . . . . . . 12
| |
| 22 | nn0re 9258 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | anim12ci 339 |
. . . . . . . . . . 11
|
| 24 | 23 | 3adant3 1019 |
. . . . . . . . . 10
|
| 25 | 1, 24 | sylbi 121 |
. . . . . . . . 9
|
| 26 | addge02 8500 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | 20, 27 | mpbid 147 |
. . . . . . 7
|
| 29 | 19, 28 | anim12i 338 |
. . . . . 6
|
| 30 | letr 8109 |
. . . . . . 7
| |
| 31 | 30 | imp 124 |
. . . . . 6
|
| 32 | 11, 14, 18, 29, 31 | syl31anc 1252 |
. . . . 5
|
| 33 | 32 | 3adant3 1019 |
. . . 4
|
| 34 | zre 9330 |
. . . . . . . 8
| |
| 35 | 21, 22 | anim12i 338 |
. . . . . . . . . . 11
|
| 36 | 35 | 3adant3 1019 |
. . . . . . . . . 10
|
| 37 | 1, 36 | sylbi 121 |
. . . . . . . . 9
|
| 38 | readdcl 8005 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | 34, 39 | anim12ci 339 |
. . . . . . 7
|
| 41 | 6, 40 | sylan 283 |
. . . . . 6
|
| 42 | 41 | 3adant3 1019 |
. . . . 5
|
| 43 | subge0 8502 |
. . . . 5
| |
| 44 | 42, 43 | syl 14 |
. . . 4
|
| 45 | 33, 44 | mpbird 167 |
. . 3
|
| 46 | elnn0z 9339 |
. . 3
| |
| 47 | 9, 45, 46 | sylanbrc 417 |
. 2
|
| 48 | elfz3nn0 10190 |
. . 3
| |
| 49 | 48 | 3ad2ant1 1020 |
. 2
|
| 50 | elfzelz 10100 |
. . . . . 6
| |
| 51 | zltnle 9372 |
. . . . . . . 8
| |
| 52 | 51 | ancoms 268 |
. . . . . . 7
|
| 53 | zre 9330 |
. . . . . . . 8
| |
| 54 | ltle 8114 |
. . . . . . . 8
| |
| 55 | 53, 34, 54 | syl2anr 290 |
. . . . . . 7
|
| 56 | 52, 55 | sylbird 170 |
. . . . . 6
|
| 57 | 6, 50, 56 | syl2an 289 |
. . . . 5
|
| 58 | 57 | 3impia 1202 |
. . . 4
|
| 59 | 50 | zred 9448 |
. . . . . . 7
|
| 60 | 59 | adantl 277 |
. . . . . 6
|
| 61 | 60, 11, 14 | leadd1d 8566 |
. . . . 5
|
| 62 | 61 | 3adant3 1019 |
. . . 4
|
| 63 | 58, 62 | mpbid 147 |
. . 3
|
| 64 | 18, 11, 14 | lesubadd2d 8571 |
. . . 4
|
| 65 | 64 | 3adant3 1019 |
. . 3
|
| 66 | 63, 65 | mpbird 167 |
. 2
|
| 67 | elfz2nn0 10187 |
. 2
| |
| 68 | 47, 49, 66, 67 | syl3anbrc 1183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |