ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfznle Unicode version

Theorem difelfznle 9905
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ( 0 ... N ) )

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 9885 . . . . . 6  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2 nn0addcl 9005 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
32nn0zd 9164 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  ZZ )
433adant3 1001 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  +  N )  e.  ZZ )
51, 4sylbi 120 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  ZZ )
6 elfzelz 9799 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
7 zsubcl 9088 . . . . 5  |-  ( ( ( M  +  N
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  +  N )  -  K
)  e.  ZZ )
85, 6, 7syl2anr 288 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  -  K )  e.  ZZ )
983adant3 1001 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ZZ )
106zred 9166 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
1110adantr 274 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  RR )
12 elfzel2 9797 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ZZ )
1312zred 9166 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  N  e.  RR )
1413adantr 274 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  N  e.  RR )
15 nn0readdcl 9029 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  RR )
16153adant3 1001 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  +  N )  e.  RR )
171, 16sylbi 120 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  RR )
1817adantl 275 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( M  +  N )  e.  RR )
19 elfzle2 9801 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
20 elfzle1 9800 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  0  <_  M )
21 nn0re 8979 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  M  e.  RR )
22 nn0re 8979 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
2321, 22anim12ci 337 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  RR  /\  M  e.  RR ) )
24233adant3 1001 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  e.  RR  /\  M  e.  RR ) )
251, 24sylbi 120 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  ( N  e.  RR  /\  M  e.  RR ) )
26 addge02 8228 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  M  <->  N  <_  ( M  +  N ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  (
0  <_  M  <->  N  <_  ( M  +  N ) ) )
2820, 27mpbid 146 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  N  <_  ( M  +  N
) )
2919, 28anim12i 336 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( K  <_  N  /\  N  <_  ( M  +  N )
) )
30 letr 7840 . . . . . . 7  |-  ( ( K  e.  RR  /\  N  e.  RR  /\  ( M  +  N )  e.  RR )  ->  (
( K  <_  N  /\  N  <_  ( M  +  N ) )  ->  K  <_  ( M  +  N )
) )
3130imp 123 . . . . . 6  |-  ( ( ( K  e.  RR  /\  N  e.  RR  /\  ( M  +  N
)  e.  RR )  /\  ( K  <_  N  /\  N  <_  ( M  +  N )
) )  ->  K  <_  ( M  +  N
) )
3211, 14, 18, 29, 31syl31anc 1219 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  <_  ( M  +  N )
)
33323adant3 1001 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  K  <_  ( M  +  N )
)
34 zre 9051 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
3521, 22anim12i 336 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  RR  /\  N  e.  RR ) )
36353adant3 1001 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  e.  RR  /\  N  e.  RR ) )
371, 36sylbi 120 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  ( M  e.  RR  /\  N  e.  RR ) )
38 readdcl 7739 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  +  N
)  e.  RR )
3937, 38syl 14 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  RR )
4034, 39anim12ci 337 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
416, 40sylan 281 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
42413adant3 1001 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
43 subge0 8230 . . . . 5  |-  ( ( ( M  +  N
)  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  (
( M  +  N
)  -  K )  <-> 
K  <_  ( M  +  N ) ) )
4442, 43syl 14 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( 0  <_ 
( ( M  +  N )  -  K
)  <->  K  <_  ( M  +  N ) ) )
4533, 44mpbird 166 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  0  <_  (
( M  +  N
)  -  K ) )
46 elnn0z 9060 . . 3  |-  ( ( ( M  +  N
)  -  K )  e.  NN0  <->  ( ( ( M  +  N )  -  K )  e.  ZZ  /\  0  <_ 
( ( M  +  N )  -  K
) ) )
479, 45, 46sylanbrc 413 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  NN0 )
48 elfz3nn0 9888 . . 3  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
49483ad2ant1 1002 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  N  e.  NN0 )
50 elfzelz 9799 . . . . . 6  |-  ( M  e.  ( 0 ... N )  ->  M  e.  ZZ )
51 zltnle 9093 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <  K  <->  -.  K  <_  M )
)
5251ancoms 266 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  K  <->  -.  K  <_  M )
)
53 zre 9051 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
54 ltle 7844 . . . . . . . 8  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  <  K  ->  M  <_  K )
)
5553, 34, 54syl2anr 288 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  K  ->  M  <_  K )
)
5652, 55sylbird 169 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( -.  K  <_  M  ->  M  <_  K
) )
576, 50, 56syl2an 287 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( -.  K  <_  M  ->  M  <_  K ) )
58573impia 1178 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  M  <_  K
)
5950zred 9166 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  M  e.  RR )
6059adantl 275 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  RR )
6160, 11, 14leadd1d 8294 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( M  <_  K 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
62613adant3 1001 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( M  <_  K 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
6358, 62mpbid 146 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( M  +  N )  <_  ( K  +  N )
)
6418, 11, 14lesubadd2d 8299 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( ( M  +  N )  -  K )  <_  N 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
65643adant3 1001 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( ( M  +  N )  -  K )  <_  N 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
6663, 65mpbird 166 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  <_  N
)
67 elfz2nn0 9885 . 2  |-  ( ( ( M  +  N
)  -  K )  e.  ( 0 ... N )  <->  ( (
( M  +  N
)  -  K )  e.  NN0  /\  N  e. 
NN0  /\  ( ( M  +  N )  -  K )  <_  N
) )
6847, 49, 66, 67syl3anbrc 1165 1  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3924  (class class class)co 5767   RRcr 7612   0cc0 7613    + caddc 7616    < clt 7793    <_ cle 7794    - cmin 7926   NN0cn0 8970   ZZcz 9047   ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator