| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difelfznle | Unicode version | ||
| Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.) |
| Ref | Expression |
|---|---|
| difelfznle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 10234 |
. . . . . 6
| |
| 2 | nn0addcl 9330 |
. . . . . . . 8
| |
| 3 | 2 | nn0zd 9493 |
. . . . . . 7
|
| 4 | 3 | 3adant3 1020 |
. . . . . 6
|
| 5 | 1, 4 | sylbi 121 |
. . . . 5
|
| 6 | elfzelz 10147 |
. . . . 5
| |
| 7 | zsubcl 9413 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2anr 290 |
. . . 4
|
| 9 | 8 | 3adant3 1020 |
. . 3
|
| 10 | 6 | zred 9495 |
. . . . . . 7
|
| 11 | 10 | adantr 276 |
. . . . . 6
|
| 12 | elfzel2 10145 |
. . . . . . . 8
| |
| 13 | 12 | zred 9495 |
. . . . . . 7
|
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | nn0readdcl 9354 |
. . . . . . . . 9
| |
| 16 | 15 | 3adant3 1020 |
. . . . . . . 8
|
| 17 | 1, 16 | sylbi 121 |
. . . . . . 7
|
| 18 | 17 | adantl 277 |
. . . . . 6
|
| 19 | elfzle2 10150 |
. . . . . . 7
| |
| 20 | elfzle1 10149 |
. . . . . . . 8
| |
| 21 | nn0re 9304 |
. . . . . . . . . . . 12
| |
| 22 | nn0re 9304 |
. . . . . . . . . . . 12
| |
| 23 | 21, 22 | anim12ci 339 |
. . . . . . . . . . 11
|
| 24 | 23 | 3adant3 1020 |
. . . . . . . . . 10
|
| 25 | 1, 24 | sylbi 121 |
. . . . . . . . 9
|
| 26 | addge02 8546 |
. . . . . . . . 9
| |
| 27 | 25, 26 | syl 14 |
. . . . . . . 8
|
| 28 | 20, 27 | mpbid 147 |
. . . . . . 7
|
| 29 | 19, 28 | anim12i 338 |
. . . . . 6
|
| 30 | letr 8155 |
. . . . . . 7
| |
| 31 | 30 | imp 124 |
. . . . . 6
|
| 32 | 11, 14, 18, 29, 31 | syl31anc 1253 |
. . . . 5
|
| 33 | 32 | 3adant3 1020 |
. . . 4
|
| 34 | zre 9376 |
. . . . . . . 8
| |
| 35 | 21, 22 | anim12i 338 |
. . . . . . . . . . 11
|
| 36 | 35 | 3adant3 1020 |
. . . . . . . . . 10
|
| 37 | 1, 36 | sylbi 121 |
. . . . . . . . 9
|
| 38 | readdcl 8051 |
. . . . . . . . 9
| |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
|
| 40 | 34, 39 | anim12ci 339 |
. . . . . . 7
|
| 41 | 6, 40 | sylan 283 |
. . . . . 6
|
| 42 | 41 | 3adant3 1020 |
. . . . 5
|
| 43 | subge0 8548 |
. . . . 5
| |
| 44 | 42, 43 | syl 14 |
. . . 4
|
| 45 | 33, 44 | mpbird 167 |
. . 3
|
| 46 | elnn0z 9385 |
. . 3
| |
| 47 | 9, 45, 46 | sylanbrc 417 |
. 2
|
| 48 | elfz3nn0 10237 |
. . 3
| |
| 49 | 48 | 3ad2ant1 1021 |
. 2
|
| 50 | elfzelz 10147 |
. . . . . 6
| |
| 51 | zltnle 9418 |
. . . . . . . 8
| |
| 52 | 51 | ancoms 268 |
. . . . . . 7
|
| 53 | zre 9376 |
. . . . . . . 8
| |
| 54 | ltle 8160 |
. . . . . . . 8
| |
| 55 | 53, 34, 54 | syl2anr 290 |
. . . . . . 7
|
| 56 | 52, 55 | sylbird 170 |
. . . . . 6
|
| 57 | 6, 50, 56 | syl2an 289 |
. . . . 5
|
| 58 | 57 | 3impia 1203 |
. . . 4
|
| 59 | 50 | zred 9495 |
. . . . . . 7
|
| 60 | 59 | adantl 277 |
. . . . . 6
|
| 61 | 60, 11, 14 | leadd1d 8612 |
. . . . 5
|
| 62 | 61 | 3adant3 1020 |
. . . 4
|
| 63 | 58, 62 | mpbid 147 |
. . 3
|
| 64 | 18, 11, 14 | lesubadd2d 8617 |
. . . 4
|
| 65 | 64 | 3adant3 1020 |
. . 3
|
| 66 | 63, 65 | mpbird 167 |
. 2
|
| 67 | elfz2nn0 10234 |
. 2
| |
| 68 | 47, 49, 66, 67 | syl3anbrc 1184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |