ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difelfznle Unicode version

Theorem difelfznle 10257
Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018.)
Assertion
Ref Expression
difelfznle  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ( 0 ... N ) )

Proof of Theorem difelfznle
StepHypRef Expression
1 elfz2nn0 10234 . . . . . 6  |-  ( M  e.  ( 0 ... N )  <->  ( M  e.  NN0  /\  N  e. 
NN0  /\  M  <_  N ) )
2 nn0addcl 9330 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  NN0 )
32nn0zd 9493 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  ZZ )
433adant3 1020 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  +  N )  e.  ZZ )
51, 4sylbi 121 . . . . 5  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  ZZ )
6 elfzelz 10147 . . . . 5  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
7 zsubcl 9413 . . . . 5  |-  ( ( ( M  +  N
)  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( M  +  N )  -  K
)  e.  ZZ )
85, 6, 7syl2anr 290 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  -  K )  e.  ZZ )
983adant3 1020 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ZZ )
106zred 9495 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  e.  RR )
1110adantr 276 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  e.  RR )
12 elfzel2 10145 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ZZ )
1312zred 9495 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  N  e.  RR )
1413adantr 276 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  N  e.  RR )
15 nn0readdcl 9354 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  +  N
)  e.  RR )
16153adant3 1020 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  +  N )  e.  RR )
171, 16sylbi 121 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  RR )
1817adantl 277 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( M  +  N )  e.  RR )
19 elfzle2 10150 . . . . . . 7  |-  ( K  e.  ( 0 ... N )  ->  K  <_  N )
20 elfzle1 10149 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  0  <_  M )
21 nn0re 9304 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  M  e.  RR )
22 nn0re 9304 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
2321, 22anim12ci 339 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  RR  /\  M  e.  RR ) )
24233adant3 1020 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  e.  RR  /\  M  e.  RR ) )
251, 24sylbi 121 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  ( N  e.  RR  /\  M  e.  RR ) )
26 addge02 8546 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  M  <->  N  <_  ( M  +  N ) ) )
2725, 26syl 14 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  (
0  <_  M  <->  N  <_  ( M  +  N ) ) )
2820, 27mpbid 147 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  N  <_  ( M  +  N
) )
2919, 28anim12i 338 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( K  <_  N  /\  N  <_  ( M  +  N )
) )
30 letr 8155 . . . . . . 7  |-  ( ( K  e.  RR  /\  N  e.  RR  /\  ( M  +  N )  e.  RR )  ->  (
( K  <_  N  /\  N  <_  ( M  +  N ) )  ->  K  <_  ( M  +  N )
) )
3130imp 124 . . . . . 6  |-  ( ( ( K  e.  RR  /\  N  e.  RR  /\  ( M  +  N
)  e.  RR )  /\  ( K  <_  N  /\  N  <_  ( M  +  N )
) )  ->  K  <_  ( M  +  N
) )
3211, 14, 18, 29, 31syl31anc 1253 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  K  <_  ( M  +  N )
)
33323adant3 1020 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  K  <_  ( M  +  N )
)
34 zre 9376 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
3521, 22anim12i 338 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  RR  /\  N  e.  RR ) )
36353adant3 1020 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( M  e.  RR  /\  N  e.  RR ) )
371, 36sylbi 121 . . . . . . . . 9  |-  ( M  e.  ( 0 ... N )  ->  ( M  e.  RR  /\  N  e.  RR ) )
38 readdcl 8051 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  +  N
)  e.  RR )
3937, 38syl 14 . . . . . . . 8  |-  ( M  e.  ( 0 ... N )  ->  ( M  +  N )  e.  RR )
4034, 39anim12ci 339 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
416, 40sylan 283 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
42413adant3 1020 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  e.  RR  /\  K  e.  RR ) )
43 subge0 8548 . . . . 5  |-  ( ( ( M  +  N
)  e.  RR  /\  K  e.  RR )  ->  ( 0  <_  (
( M  +  N
)  -  K )  <-> 
K  <_  ( M  +  N ) ) )
4442, 43syl 14 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( 0  <_ 
( ( M  +  N )  -  K
)  <->  K  <_  ( M  +  N ) ) )
4533, 44mpbird 167 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  0  <_  (
( M  +  N
)  -  K ) )
46 elnn0z 9385 . . 3  |-  ( ( ( M  +  N
)  -  K )  e.  NN0  <->  ( ( ( M  +  N )  -  K )  e.  ZZ  /\  0  <_ 
( ( M  +  N )  -  K
) ) )
479, 45, 46sylanbrc 417 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  NN0 )
48 elfz3nn0 10237 . . 3  |-  ( K  e.  ( 0 ... N )  ->  N  e.  NN0 )
49483ad2ant1 1021 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  N  e.  NN0 )
50 elfzelz 10147 . . . . . 6  |-  ( M  e.  ( 0 ... N )  ->  M  e.  ZZ )
51 zltnle 9418 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <  K  <->  -.  K  <_  M )
)
5251ancoms 268 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  K  <->  -.  K  <_  M )
)
53 zre 9376 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
54 ltle 8160 . . . . . . . 8  |-  ( ( M  e.  RR  /\  K  e.  RR )  ->  ( M  <  K  ->  M  <_  K )
)
5553, 34, 54syl2anr 290 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( M  <  K  ->  M  <_  K )
)
5652, 55sylbird 170 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( -.  K  <_  M  ->  M  <_  K
) )
576, 50, 56syl2an 289 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( -.  K  <_  M  ->  M  <_  K ) )
58573impia 1203 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  M  <_  K
)
5950zred 9495 . . . . . . 7  |-  ( M  e.  ( 0 ... N )  ->  M  e.  RR )
6059adantl 277 . . . . . 6  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  M  e.  RR )
6160, 11, 14leadd1d 8612 . . . . 5  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( M  <_  K 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
62613adant3 1020 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( M  <_  K 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
6358, 62mpbid 147 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( M  +  N )  <_  ( K  +  N )
)
6418, 11, 14lesubadd2d 8617 . . . 4  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N ) )  ->  ( ( ( M  +  N )  -  K )  <_  N 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
65643adant3 1020 . . 3  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( ( M  +  N )  -  K )  <_  N 
<->  ( M  +  N
)  <_  ( K  +  N ) ) )
6663, 65mpbird 167 . 2  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  <_  N
)
67 elfz2nn0 10234 . 2  |-  ( ( ( M  +  N
)  -  K )  e.  ( 0 ... N )  <->  ( (
( M  +  N
)  -  K )  e.  NN0  /\  N  e. 
NN0  /\  ( ( M  +  N )  -  K )  <_  N
) )
6847, 49, 66, 67syl3anbrc 1184 1  |-  ( ( K  e.  ( 0 ... N )  /\  M  e.  ( 0 ... N )  /\  -.  K  <_  M )  ->  ( ( M  +  N )  -  K )  e.  ( 0 ... N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928    < clt 8107    <_ cle 8108    - cmin 8243   NN0cn0 9295   ZZcz 9372   ...cfz 10130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator