Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nq0a0 | Unicode version |
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
nq0a0 | Q0 +Q0 0Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nq0nn 7383 | . 2 Q0 ~Q0 | |
2 | df-0nq0 7367 | . . . . . 6 0Q0 ~Q0 | |
3 | oveq12 5851 | . . . . . 6 ~Q0 0Q0 ~Q0 +Q0 0Q0 ~Q0 +Q0 ~Q0 | |
4 | 2, 3 | mpan2 422 | . . . . 5 ~Q0 +Q0 0Q0 ~Q0 +Q0 ~Q0 |
5 | peano1 4571 | . . . . . 6 | |
6 | 1pi 7256 | . . . . . 6 | |
7 | addnnnq0 7390 | . . . . . 6 ~Q0 +Q0 ~Q0 ~Q0 | |
8 | 5, 6, 7 | mpanr12 436 | . . . . 5 ~Q0 +Q0 ~Q0 ~Q0 |
9 | 4, 8 | sylan9eqr 2221 | . . . 4 ~Q0 +Q0 0Q0 ~Q0 |
10 | pinn 7250 | . . . . . . . . . 10 | |
11 | nnm0 6443 | . . . . . . . . . . 11 | |
12 | 11 | oveq2d 5858 | . . . . . . . . . 10 |
13 | 10, 12 | syl 14 | . . . . . . . . 9 |
14 | nnm1 6492 | . . . . . . . . . . 11 | |
15 | 14 | oveq1d 5857 | . . . . . . . . . 10 |
16 | nna0 6442 | . . . . . . . . . 10 | |
17 | 15, 16 | eqtrd 2198 | . . . . . . . . 9 |
18 | 13, 17 | sylan9eqr 2221 | . . . . . . . 8 |
19 | nnm1 6492 | . . . . . . . . . 10 | |
20 | 10, 19 | syl 14 | . . . . . . . . 9 |
21 | 20 | adantl 275 | . . . . . . . 8 |
22 | 18, 21 | opeq12d 3766 | . . . . . . 7 |
23 | 22 | eceq1d 6537 | . . . . . 6 ~Q0 ~Q0 |
24 | 23 | eqeq2d 2177 | . . . . 5 ~Q0 ~Q0 |
25 | 24 | biimpar 295 | . . . 4 ~Q0 ~Q0 |
26 | 9, 25 | eqtr4d 2201 | . . 3 ~Q0 +Q0 0Q0 |
27 | 26 | exlimivv 1884 | . 2 ~Q0 +Q0 0Q0 |
28 | 1, 27 | syl 14 | 1 Q0 +Q0 0Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 c0 3409 cop 3579 com 4567 (class class class)co 5842 c1o 6377 coa 6381 comu 6382 cec 6499 cnpi 7213 ~Q0 ceq0 7227 Q0cnq0 7228 0Q0c0q0 7229 +Q0 cplq0 7230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-mi 7247 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 |
This theorem is referenced by: prarloclem5 7441 |
Copyright terms: Public domain | W3C validator |