ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 Unicode version

Theorem nq0a0 6995
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )

Proof of Theorem nq0a0
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 6980 . 2  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
2 df-0nq0 6964 . . . . . 6  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
3 oveq12 5643 . . . . . 6  |-  ( ( A  =  [ <. w ,  v >. ] ~Q0  /\ 0Q0  =  [ <. (/) ,  1o >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
42, 3mpan2 416 . . . . 5  |-  ( A  =  [ <. w ,  v >. ] ~Q0  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
5 peano1 4399 . . . . . 6  |-  (/)  e.  om
6 1pi 6853 . . . . . 6  |-  1o  e.  N.
7 addnnnq0 6987 . . . . . 6  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( (/)  e.  om  /\  1o  e.  N. )
)  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <. (/) ,  1o >. ] ~Q0  )  =  [ <. (
( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
85, 6, 7mpanr12 430 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
94, 8sylan9eqr 2142 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
10 pinn 6847 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
11 nnm0 6218 . . . . . . . . . . 11  |-  ( v  e.  om  ->  (
v  .o  (/) )  =  (/) )
1211oveq2d 5650 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
14 nnm1 6263 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
w  .o  1o )  =  w )
1514oveq1d 5649 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  ( w  +o  (/) ) )
16 nna0 6217 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
w  +o  (/) )  =  w )
1715, 16eqtrd 2120 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  w )
1813, 17sylan9eqr 2142 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( w  .o  1o )  +o  (
v  .o  (/) ) )  =  w )
19 nnm1 6263 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
v  .o  1o )  =  v )
2010, 19syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
v  .o  1o )  =  v )
2120adantl 271 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( v  .o  1o )  =  v )
2218, 21opeq12d 3625 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  -> 
<. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >.  =  <. w ,  v >. )
2322eceq1d 6308 . . . . . 6  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  )
2423eqeq2d 2099 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  <-> 
A  =  [ <. w ,  v >. ] ~Q0  ) )
2524biimpar 291 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
269, 25eqtr4d 2123 . . 3  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
2726exlimivv 1824 . 2  |-  ( E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
281, 27syl 14 1  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289   E.wex 1426    e. wcel 1438   (/)c0 3284   <.cop 3444   omcom 4395  (class class class)co 5634   1oc1o 6156    +o coa 6160    .o comu 6161   [cec 6270   N.cnpi 6810   ~Q0 ceq0 6824  Q0cnq0 6825  0Q0c0q0 6826   +Q0 cplq0 6827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-mi 6844  df-enq0 6962  df-nq0 6963  df-0nq0 6964  df-plq0 6965
This theorem is referenced by:  prarloclem5  7038
  Copyright terms: Public domain W3C validator