Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nq0a0 | Unicode version |
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
nq0a0 | Q0 +Q0 0Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nq0nn 7404 | . 2 Q0 ~Q0 | |
2 | df-0nq0 7388 | . . . . . 6 0Q0 ~Q0 | |
3 | oveq12 5862 | . . . . . 6 ~Q0 0Q0 ~Q0 +Q0 0Q0 ~Q0 +Q0 ~Q0 | |
4 | 2, 3 | mpan2 423 | . . . . 5 ~Q0 +Q0 0Q0 ~Q0 +Q0 ~Q0 |
5 | peano1 4578 | . . . . . 6 | |
6 | 1pi 7277 | . . . . . 6 | |
7 | addnnnq0 7411 | . . . . . 6 ~Q0 +Q0 ~Q0 ~Q0 | |
8 | 5, 6, 7 | mpanr12 437 | . . . . 5 ~Q0 +Q0 ~Q0 ~Q0 |
9 | 4, 8 | sylan9eqr 2225 | . . . 4 ~Q0 +Q0 0Q0 ~Q0 |
10 | pinn 7271 | . . . . . . . . . 10 | |
11 | nnm0 6454 | . . . . . . . . . . 11 | |
12 | 11 | oveq2d 5869 | . . . . . . . . . 10 |
13 | 10, 12 | syl 14 | . . . . . . . . 9 |
14 | nnm1 6504 | . . . . . . . . . . 11 | |
15 | 14 | oveq1d 5868 | . . . . . . . . . 10 |
16 | nna0 6453 | . . . . . . . . . 10 | |
17 | 15, 16 | eqtrd 2203 | . . . . . . . . 9 |
18 | 13, 17 | sylan9eqr 2225 | . . . . . . . 8 |
19 | nnm1 6504 | . . . . . . . . . 10 | |
20 | 10, 19 | syl 14 | . . . . . . . . 9 |
21 | 20 | adantl 275 | . . . . . . . 8 |
22 | 18, 21 | opeq12d 3773 | . . . . . . 7 |
23 | 22 | eceq1d 6549 | . . . . . 6 ~Q0 ~Q0 |
24 | 23 | eqeq2d 2182 | . . . . 5 ~Q0 ~Q0 |
25 | 24 | biimpar 295 | . . . 4 ~Q0 ~Q0 |
26 | 9, 25 | eqtr4d 2206 | . . 3 ~Q0 +Q0 0Q0 |
27 | 26 | exlimivv 1889 | . 2 ~Q0 +Q0 0Q0 |
28 | 1, 27 | syl 14 | 1 Q0 +Q0 0Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 c0 3414 cop 3586 com 4574 (class class class)co 5853 c1o 6388 coa 6392 comu 6393 cec 6511 cnpi 7234 ~Q0 ceq0 7248 Q0cnq0 7249 0Q0c0q0 7250 +Q0 cplq0 7251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 |
This theorem is referenced by: prarloclem5 7462 |
Copyright terms: Public domain | W3C validator |