ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 Unicode version

Theorem nq0a0 7632
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )

Proof of Theorem nq0a0
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7617 . 2  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
2 df-0nq0 7601 . . . . . 6  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
3 oveq12 6003 . . . . . 6  |-  ( ( A  =  [ <. w ,  v >. ] ~Q0  /\ 0Q0  =  [ <. (/) ,  1o >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
42, 3mpan2 425 . . . . 5  |-  ( A  =  [ <. w ,  v >. ] ~Q0  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
5 peano1 4683 . . . . . 6  |-  (/)  e.  om
6 1pi 7490 . . . . . 6  |-  1o  e.  N.
7 addnnnq0 7624 . . . . . 6  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( (/)  e.  om  /\  1o  e.  N. )
)  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <. (/) ,  1o >. ] ~Q0  )  =  [ <. (
( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
85, 6, 7mpanr12 439 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
94, 8sylan9eqr 2284 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
10 pinn 7484 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
11 nnm0 6611 . . . . . . . . . . 11  |-  ( v  e.  om  ->  (
v  .o  (/) )  =  (/) )
1211oveq2d 6010 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
14 nnm1 6661 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
w  .o  1o )  =  w )
1514oveq1d 6009 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  ( w  +o  (/) ) )
16 nna0 6610 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
w  +o  (/) )  =  w )
1715, 16eqtrd 2262 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  w )
1813, 17sylan9eqr 2284 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( w  .o  1o )  +o  (
v  .o  (/) ) )  =  w )
19 nnm1 6661 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
v  .o  1o )  =  v )
2010, 19syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
v  .o  1o )  =  v )
2120adantl 277 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( v  .o  1o )  =  v )
2218, 21opeq12d 3864 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  -> 
<. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >.  =  <. w ,  v >. )
2322eceq1d 6706 . . . . . 6  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  )
2423eqeq2d 2241 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  <-> 
A  =  [ <. w ,  v >. ] ~Q0  ) )
2524biimpar 297 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
269, 25eqtr4d 2265 . . 3  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
2726exlimivv 1943 . 2  |-  ( E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
281, 27syl 14 1  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491   <.cop 3669   omcom 4679  (class class class)co 5994   1oc1o 6545    +o coa 6549    .o comu 6550   [cec 6668   N.cnpi 7447   ~Q0 ceq0 7461  Q0cnq0 7462  0Q0c0q0 7463   +Q0 cplq0 7464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-mi 7481  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602
This theorem is referenced by:  prarloclem5  7675
  Copyright terms: Public domain W3C validator