ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 Unicode version

Theorem nq0a0 7456
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )

Proof of Theorem nq0a0
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7441 . 2  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
2 df-0nq0 7425 . . . . . 6  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
3 oveq12 5884 . . . . . 6  |-  ( ( A  =  [ <. w ,  v >. ] ~Q0  /\ 0Q0  =  [ <. (/) ,  1o >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
42, 3mpan2 425 . . . . 5  |-  ( A  =  [ <. w ,  v >. ] ~Q0  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
5 peano1 4594 . . . . . 6  |-  (/)  e.  om
6 1pi 7314 . . . . . 6  |-  1o  e.  N.
7 addnnnq0 7448 . . . . . 6  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( (/)  e.  om  /\  1o  e.  N. )
)  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <. (/) ,  1o >. ] ~Q0  )  =  [ <. (
( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
85, 6, 7mpanr12 439 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
94, 8sylan9eqr 2232 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
10 pinn 7308 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
11 nnm0 6476 . . . . . . . . . . 11  |-  ( v  e.  om  ->  (
v  .o  (/) )  =  (/) )
1211oveq2d 5891 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
14 nnm1 6526 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
w  .o  1o )  =  w )
1514oveq1d 5890 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  ( w  +o  (/) ) )
16 nna0 6475 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
w  +o  (/) )  =  w )
1715, 16eqtrd 2210 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  w )
1813, 17sylan9eqr 2232 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( w  .o  1o )  +o  (
v  .o  (/) ) )  =  w )
19 nnm1 6526 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
v  .o  1o )  =  v )
2010, 19syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
v  .o  1o )  =  v )
2120adantl 277 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( v  .o  1o )  =  v )
2218, 21opeq12d 3787 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  -> 
<. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >.  =  <. w ,  v >. )
2322eceq1d 6571 . . . . . 6  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  )
2423eqeq2d 2189 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  <-> 
A  =  [ <. w ,  v >. ] ~Q0  ) )
2524biimpar 297 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
269, 25eqtr4d 2213 . . 3  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
2726exlimivv 1896 . 2  |-  ( E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
281, 27syl 14 1  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   (/)c0 3423   <.cop 3596   omcom 4590  (class class class)co 5875   1oc1o 6410    +o coa 6414    .o comu 6415   [cec 6533   N.cnpi 7271   ~Q0 ceq0 7285  Q0cnq0 7286  0Q0c0q0 7287   +Q0 cplq0 7288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-mi 7305  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426
This theorem is referenced by:  prarloclem5  7499
  Copyright terms: Public domain W3C validator