ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0a0 Unicode version

Theorem nq0a0 7389
Description: Addition with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0a0  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )

Proof of Theorem nq0a0
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7374 . 2  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
2 df-0nq0 7358 . . . . . 6  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
3 oveq12 5845 . . . . . 6  |-  ( ( A  =  [ <. w ,  v >. ] ~Q0  /\ 0Q0  =  [ <. (/) ,  1o >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
42, 3mpan2 422 . . . . 5  |-  ( A  =  [ <. w ,  v >. ] ~Q0  ->  ( A +Q0 0Q0 )  =  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  ) )
5 peano1 4565 . . . . . 6  |-  (/)  e.  om
6 1pi 7247 . . . . . 6  |-  1o  e.  N.
7 addnnnq0 7381 . . . . . 6  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( (/)  e.  om  /\  1o  e.  N. )
)  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <. (/) ,  1o >. ] ~Q0  )  =  [ <. (
( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
85, 6, 7mpanr12 436 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. w ,  v >. ] ~Q0 +Q0  [ <.
(/) ,  1o >. ] ~Q0  )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o )
>. ] ~Q0  )
94, 8sylan9eqr 2219 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
10 pinn 7241 . . . . . . . . . 10  |-  ( v  e.  N.  ->  v  e.  om )
11 nnm0 6434 . . . . . . . . . . 11  |-  ( v  e.  om  ->  (
v  .o  (/) )  =  (/) )
1211oveq2d 5852 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
1310, 12syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
( w  .o  1o )  +o  ( v  .o  (/) ) )  =  ( ( w  .o  1o )  +o  (/) ) )
14 nnm1 6483 . . . . . . . . . . 11  |-  ( w  e.  om  ->  (
w  .o  1o )  =  w )
1514oveq1d 5851 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  ( w  +o  (/) ) )
16 nna0 6433 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
w  +o  (/) )  =  w )
1715, 16eqtrd 2197 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( w  .o  1o )  +o  (/) )  =  w )
1813, 17sylan9eqr 2219 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( w  .o  1o )  +o  (
v  .o  (/) ) )  =  w )
19 nnm1 6483 . . . . . . . . . 10  |-  ( v  e.  om  ->  (
v  .o  1o )  =  v )
2010, 19syl 14 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
v  .o  1o )  =  v )
2120adantl 275 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( v  .o  1o )  =  v )
2218, 21opeq12d 3760 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  -> 
<. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >.  =  <. w ,  v >. )
2322eceq1d 6528 . . . . . 6  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( ( w  .o  1o )  +o  ( v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  =  [ <. w ,  v >. ] ~Q0  )
2423eqeq2d 2176 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  <-> 
A  =  [ <. w ,  v >. ] ~Q0  ) )
2524biimpar 295 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  A  =  [ <. ( ( w  .o  1o )  +o  (
v  .o  (/) ) ) ,  ( v  .o  1o ) >. ] ~Q0  )
269, 25eqtr4d 2200 . . 3  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
2726exlimivv 1883 . 2  |-  ( E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  ( A +Q0 0Q0 )  =  A )
281, 27syl 14 1  |-  ( A  e. Q0  ->  ( A +Q0 0Q0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342   E.wex 1479    e. wcel 2135   (/)c0 3404   <.cop 3573   omcom 4561  (class class class)co 5836   1oc1o 6368    +o coa 6372    .o comu 6373   [cec 6490   N.cnpi 7204   ~Q0 ceq0 7218  Q0cnq0 7219  0Q0c0q0 7220   +Q0 cplq0 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-mi 7238  df-enq0 7356  df-nq0 7357  df-0nq0 7358  df-plq0 7359
This theorem is referenced by:  prarloclem5  7432
  Copyright terms: Public domain W3C validator