ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nq0m0r Unicode version

Theorem nq0m0r 7257
Description: Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.)
Assertion
Ref Expression
nq0m0r  |-  ( A  e. Q0  ->  (0Q0 ·Q0  A )  = 0Q0 )

Proof of Theorem nq0m0r
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nq0nn 7243 . 2  |-  ( A  e. Q0  ->  E. w E. v
( ( w  e. 
om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v
>. ] ~Q0  ) )
2 df-0nq0 7227 . . . . . 6  |- 0Q0  =  [ <. (/) ,  1o >. ] ~Q0
3 oveq12 5776 . . . . . 6  |-  ( (0Q0  =  [ <. (/) ,  1o >. ] ~Q0  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  ) )
42, 3mpan 420 . . . . 5  |-  ( A  =  [ <. w ,  v >. ] ~Q0  ->  (0Q0 ·Q0  A )  =  ( [ <. (/)
,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  ) )
5 peano1 4503 . . . . . 6  |-  (/)  e.  om
6 1pi 7116 . . . . . 6  |-  1o  e.  N.
7 mulnnnq0 7251 . . . . . 6  |-  ( ( ( (/)  e.  om  /\  1o  e.  N. )  /\  ( w  e.  om  /\  v  e.  N. )
)  ->  ( [ <.
(/) ,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  )  =  [ <. (
(/)  .o  w ) ,  ( 1o  .o  v ) >. ] ~Q0  )
85, 6, 7mpanl12 432 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. (/) ,  1o >. ] ~Q0 ·Q0  [ <. w ,  v >. ] ~Q0  )  =  [ <. (
(/)  .o  w ) ,  ( 1o  .o  v ) >. ] ~Q0  )
94, 8sylan9eqr 2192 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  =  [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  )
10 nnm0r 6368 . . . . . . . . . . 11  |-  ( w  e.  om  ->  ( (/) 
.o  w )  =  (/) )
1110oveq1d 5782 . . . . . . . . . 10  |-  ( w  e.  om  ->  (
( (/)  .o  w )  .o  1o )  =  ( (/)  .o  1o ) )
12 1onn 6409 . . . . . . . . . . 11  |-  1o  e.  om
13 nnm0r 6368 . . . . . . . . . . 11  |-  ( 1o  e.  om  ->  ( (/) 
.o  1o )  =  (/) )
1412, 13ax-mp 5 . . . . . . . . . 10  |-  ( (/)  .o  1o )  =  (/)
1511, 14syl6eq 2186 . . . . . . . . 9  |-  ( w  e.  om  ->  (
( (/)  .o  w )  .o  1o )  =  (/) )
1615adantr 274 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( (/)  .o  w
)  .o  1o )  =  (/) )
17 mulpiord 7118 . . . . . . . . . . . 12  |-  ( ( 1o  e.  N.  /\  v  e.  N. )  ->  ( 1o  .N  v
)  =  ( 1o 
.o  v ) )
18 mulclpi 7129 . . . . . . . . . . . 12  |-  ( ( 1o  e.  N.  /\  v  e.  N. )  ->  ( 1o  .N  v
)  e.  N. )
1917, 18eqeltrrd 2215 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  v  e.  N. )  ->  ( 1o  .o  v
)  e.  N. )
206, 19mpan 420 . . . . . . . . . 10  |-  ( v  e.  N.  ->  ( 1o  .o  v )  e. 
N. )
21 pinn 7110 . . . . . . . . . 10  |-  ( ( 1o  .o  v )  e.  N.  ->  ( 1o  .o  v )  e. 
om )
22 nnm0 6364 . . . . . . . . . 10  |-  ( ( 1o  .o  v )  e.  om  ->  (
( 1o  .o  v
)  .o  (/) )  =  (/) )
2320, 21, 223syl 17 . . . . . . . . 9  |-  ( v  e.  N.  ->  (
( 1o  .o  v
)  .o  (/) )  =  (/) )
2423adantl 275 . . . . . . . 8  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( 1o  .o  v )  .o  (/) )  =  (/) )
2516, 24eqtr4d 2173 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( ( (/)  .o  w
)  .o  1o )  =  ( ( 1o 
.o  v )  .o  (/) ) )
2610, 5eqeltrdi 2228 . . . . . . . 8  |-  ( w  e.  om  ->  ( (/) 
.o  w )  e. 
om )
27 enq0eceq 7238 . . . . . . . . 9  |-  ( ( ( ( (/)  .o  w
)  e.  om  /\  ( 1o  .o  v
)  e.  N. )  /\  ( (/)  e.  om  /\  1o  e.  N. )
)  ->  ( [ <. ( (/)  .o  w
) ,  ( 1o 
.o  v ) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  <->  ( ( (/) 
.o  w )  .o  1o )  =  ( ( 1o  .o  v
)  .o  (/) ) ) )
285, 6, 27mpanr12 435 . . . . . . . 8  |-  ( ( ( (/)  .o  w
)  e.  om  /\  ( 1o  .o  v
)  e.  N. )  ->  ( [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  <->  ( ( (/)  .o  w
)  .o  1o )  =  ( ( 1o 
.o  v )  .o  (/) ) ) )
2926, 20, 28syl2an 287 . . . . . . 7  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  ( [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  <->  ( ( (/)  .o  w
)  .o  1o )  =  ( ( 1o 
.o  v )  .o  (/) ) ) )
3025, 29mpbird 166 . . . . . 6  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( (/)  .o  w
) ,  ( 1o 
.o  v ) >. ] ~Q0  =  [ <. (/) ,  1o >. ] ~Q0  )
3130, 2syl6eqr 2188 . . . . 5  |-  ( ( w  e.  om  /\  v  e.  N. )  ->  [ <. ( (/)  .o  w
) ,  ( 1o 
.o  v ) >. ] ~Q0  = 0Q0 )
3231adantr 274 . . . 4  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  [ <. ( (/) 
.o  w ) ,  ( 1o  .o  v
) >. ] ~Q0  = 0Q0 )
339, 32eqtrd 2170 . . 3  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  = 0Q0 )
3433exlimivv 1868 . 2  |-  ( E. w E. v ( ( w  e.  om  /\  v  e.  N. )  /\  A  =  [ <. w ,  v >. ] ~Q0  )  ->  (0Q0 ·Q0  A )  = 0Q0 )
351, 34syl 14 1  |-  ( A  e. Q0  ->  (0Q0 ·Q0  A )  = 0Q0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   (/)c0 3358   <.cop 3525   omcom 4499  (class class class)co 5767   1oc1o 6299    .o comu 6304   [cec 6420   N.cnpi 7073    .N cmi 7075   ~Q0 ceq0 7087  Q0cnq0 7088  0Q0c0q0 7089   ·Q0 cmq0 7091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-mq0 7229
This theorem is referenced by:  prarloclem5  7301
  Copyright terms: Public domain W3C validator