Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nq0m0r | Unicode version |
Description: Multiplication with zero for nonnegative fractions. (Contributed by Jim Kingdon, 5-Nov-2019.) |
Ref | Expression |
---|---|
nq0m0r | Q0 0Q0 ·Q0 0Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nq0nn 7383 | . 2 Q0 ~Q0 | |
2 | df-0nq0 7367 | . . . . . 6 0Q0 ~Q0 | |
3 | oveq12 5851 | . . . . . 6 0Q0 ~Q0 ~Q0 0Q0 ·Q0 ~Q0 ·Q0 ~Q0 | |
4 | 2, 3 | mpan 421 | . . . . 5 ~Q0 0Q0 ·Q0 ~Q0 ·Q0 ~Q0 |
5 | peano1 4571 | . . . . . 6 | |
6 | 1pi 7256 | . . . . . 6 | |
7 | mulnnnq0 7391 | . . . . . 6 ~Q0 ·Q0 ~Q0 ~Q0 | |
8 | 5, 6, 7 | mpanl12 433 | . . . . 5 ~Q0 ·Q0 ~Q0 ~Q0 |
9 | 4, 8 | sylan9eqr 2221 | . . . 4 ~Q0 0Q0 ·Q0 ~Q0 |
10 | nnm0r 6447 | . . . . . . . . . . 11 | |
11 | 10 | oveq1d 5857 | . . . . . . . . . 10 |
12 | 1onn 6488 | . . . . . . . . . . 11 | |
13 | nnm0r 6447 | . . . . . . . . . . 11 | |
14 | 12, 13 | ax-mp 5 | . . . . . . . . . 10 |
15 | 11, 14 | eqtrdi 2215 | . . . . . . . . 9 |
16 | 15 | adantr 274 | . . . . . . . 8 |
17 | mulpiord 7258 | . . . . . . . . . . . 12 | |
18 | mulclpi 7269 | . . . . . . . . . . . 12 | |
19 | 17, 18 | eqeltrrd 2244 | . . . . . . . . . . 11 |
20 | 6, 19 | mpan 421 | . . . . . . . . . 10 |
21 | pinn 7250 | . . . . . . . . . 10 | |
22 | nnm0 6443 | . . . . . . . . . 10 | |
23 | 20, 21, 22 | 3syl 17 | . . . . . . . . 9 |
24 | 23 | adantl 275 | . . . . . . . 8 |
25 | 16, 24 | eqtr4d 2201 | . . . . . . 7 |
26 | 10, 5 | eqeltrdi 2257 | . . . . . . . 8 |
27 | enq0eceq 7378 | . . . . . . . . 9 ~Q0 ~Q0 | |
28 | 5, 6, 27 | mpanr12 436 | . . . . . . . 8 ~Q0 ~Q0 |
29 | 26, 20, 28 | syl2an 287 | . . . . . . 7 ~Q0 ~Q0 |
30 | 25, 29 | mpbird 166 | . . . . . 6 ~Q0 ~Q0 |
31 | 30, 2 | eqtr4di 2217 | . . . . 5 ~Q0 0Q0 |
32 | 31 | adantr 274 | . . . 4 ~Q0 ~Q0 0Q0 |
33 | 9, 32 | eqtrd 2198 | . . 3 ~Q0 0Q0 ·Q0 0Q0 |
34 | 33 | exlimivv 1884 | . 2 ~Q0 0Q0 ·Q0 0Q0 |
35 | 1, 34 | syl 14 | 1 Q0 0Q0 ·Q0 0Q0 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 c0 3409 cop 3579 com 4567 (class class class)co 5842 c1o 6377 comu 6382 cec 6499 cnpi 7213 cmi 7215 ~Q0 ceq0 7227 Q0cnq0 7228 0Q0c0q0 7229 ·Q0 cmq0 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-mi 7247 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-mq0 7369 |
This theorem is referenced by: prarloclem5 7441 |
Copyright terms: Public domain | W3C validator |