ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decnncl2 Unicode version

Theorem decnncl2 9217
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.)
Hypothesis
Ref Expression
decnncl2.1  |-  A  e.  NN
Assertion
Ref Expression
decnncl2  |- ; A 0  e.  NN

Proof of Theorem decnncl2
StepHypRef Expression
1 dfdec10 9197 . 2  |- ; A 0  =  ( (; 1 0  x.  A
)  +  0 )
2 10nn 9209 . . 3  |- ; 1 0  e.  NN
3 decnncl2.1 . . 3  |-  A  e.  NN
42, 3numnncl2 9216 . 2  |-  ( (; 1
0  x.  A )  +  0 )  e.  NN
51, 4eqeltri 2212 1  |- ; A 0  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 1480  (class class class)co 5774   0cc0 7632   1c1 7633    + caddc 7635    x. cmul 7637   NNcn 8732  ;cdc 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-1rid 7739  ax-0id 7740  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-5 8794  df-6 8795  df-7 8796  df-8 8797  df-9 8798  df-dec 9195
This theorem is referenced by:  3dec  10473
  Copyright terms: Public domain W3C validator