ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcli Unicode version

Theorem nnmulcli 8766
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nnmulcli.1  |-  A  e.  NN
nnmulcli.2  |-  B  e.  NN
Assertion
Ref Expression
nnmulcli  |-  ( A  x.  B )  e.  NN

Proof of Theorem nnmulcli
StepHypRef Expression
1 nnmulcli.1 . 2  |-  A  e.  NN
2 nnmulcli.2 . 2  |-  B  e.  NN
3 nnmulcl 8765 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
41, 2, 3mp2an 423 1  |-  ( A  x.  B )  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 1481  (class class class)co 5782    x. cmul 7649   NNcn 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-1rid 7751  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-iota 5096  df-fv 5139  df-ov 5785  df-inn 8745
This theorem is referenced by:  numnncl2  9228  ef01bndlem  11499
  Copyright terms: Public domain W3C validator