ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oncardval Unicode version

Theorem oncardval 7354
Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
oncardval  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
Distinct variable group:    x, A

Proof of Theorem oncardval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 enrefg 6913 . . 3  |-  ( A  e.  On  ->  A  ~~  A )
2 breq1 4085 . . . 4  |-  ( y  =  A  ->  (
y  ~~  A  <->  A  ~~  A ) )
32rspcev 2907 . . 3  |-  ( ( A  e.  On  /\  A  ~~  A )  ->  E. y  e.  On  y  ~~  A )
41, 3mpdan 421 . 2  |-  ( A  e.  On  ->  E. y  e.  On  y  ~~  A
)
5 cardval3ex 7353 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  =  |^| { x  e.  On  |  x  ~~  A } )
64, 5syl 14 1  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   E.wrex 2509   {crab 2512   |^|cint 3922   class class class wbr 4082   Oncon0 4453   ` cfv 5317    ~~ cen 6883   cardccrd 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-en 6886  df-card 7347
This theorem is referenced by:  cardonle  7355
  Copyright terms: Public domain W3C validator