ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oncardval Unicode version

Theorem oncardval 7138
Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
oncardval  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
Distinct variable group:    x, A

Proof of Theorem oncardval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 enrefg 6726 . . 3  |-  ( A  e.  On  ->  A  ~~  A )
2 breq1 3984 . . . 4  |-  ( y  =  A  ->  (
y  ~~  A  <->  A  ~~  A ) )
32rspcev 2829 . . 3  |-  ( ( A  e.  On  /\  A  ~~  A )  ->  E. y  e.  On  y  ~~  A )
41, 3mpdan 418 . 2  |-  ( A  e.  On  ->  E. y  e.  On  y  ~~  A
)
5 cardval3ex 7137 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  =  |^| { x  e.  On  |  x  ~~  A } )
64, 5syl 14 1  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   E.wrex 2444   {crab 2447   |^|cint 3823   class class class wbr 3981   Oncon0 4340   ` cfv 5187    ~~ cen 6700   cardccrd 7131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-un 4410
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-sbc 2951  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-en 6703  df-card 7132
This theorem is referenced by:  cardonle  7139
  Copyright terms: Public domain W3C validator