ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oncardval Unicode version

Theorem oncardval 7199
Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
oncardval  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
Distinct variable group:    x, A

Proof of Theorem oncardval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 enrefg 6778 . . 3  |-  ( A  e.  On  ->  A  ~~  A )
2 breq1 4018 . . . 4  |-  ( y  =  A  ->  (
y  ~~  A  <->  A  ~~  A ) )
32rspcev 2853 . . 3  |-  ( ( A  e.  On  /\  A  ~~  A )  ->  E. y  e.  On  y  ~~  A )
41, 3mpdan 421 . 2  |-  ( A  e.  On  ->  E. y  e.  On  y  ~~  A
)
5 cardval3ex 7198 . 2  |-  ( E. y  e.  On  y  ~~  A  ->  ( card `  A )  =  |^| { x  e.  On  |  x  ~~  A } )
64, 5syl 14 1  |-  ( A  e.  On  ->  ( card `  A )  = 
|^| { x  e.  On  |  x  ~~  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   E.wrex 2466   {crab 2469   |^|cint 3856   class class class wbr 4015   Oncon0 4375   ` cfv 5228    ~~ cen 6752   cardccrd 7192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-en 6755  df-card 7193
This theorem is referenced by:  cardonle  7200
  Copyright terms: Public domain W3C validator