ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oncardval GIF version

Theorem oncardval 7300
Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
oncardval (𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem oncardval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 enrefg 6862 . . 3 (𝐴 ∈ On → 𝐴𝐴)
2 breq1 4050 . . . 4 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
32rspcev 2878 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
41, 3mpdan 421 . 2 (𝐴 ∈ On → ∃𝑦 ∈ On 𝑦𝐴)
5 cardval3ex 7299 . 2 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
64, 5syl 14 1 (𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wrex 2486  {crab 2489   cint 3887   class class class wbr 4047  Oncon0 4414  cfv 5276  cen 6832  cardccrd 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-en 6835  df-card 7293
This theorem is referenced by:  cardonle  7301
  Copyright terms: Public domain W3C validator