ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oncardval GIF version

Theorem oncardval 7248
Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
oncardval (𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem oncardval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 enrefg 6820 . . 3 (𝐴 ∈ On → 𝐴𝐴)
2 breq1 4033 . . . 4 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
32rspcev 2865 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐴) → ∃𝑦 ∈ On 𝑦𝐴)
41, 3mpdan 421 . 2 (𝐴 ∈ On → ∃𝑦 ∈ On 𝑦𝐴)
5 cardval3ex 7247 . 2 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
64, 5syl 14 1 (𝐴 ∈ On → (card‘𝐴) = {𝑥 ∈ On ∣ 𝑥𝐴})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wrex 2473  {crab 2476   cint 3871   class class class wbr 4030  Oncon0 4395  cfv 5255  cen 6794  cardccrd 7241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-en 6797  df-card 7242
This theorem is referenced by:  cardonle  7249
  Copyright terms: Public domain W3C validator