ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oncardval GIF version

Theorem oncardval 7185
Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
oncardval (𝐴 ∈ On β†’ (cardβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
Distinct variable group:   π‘₯,𝐴

Proof of Theorem oncardval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 enrefg 6764 . . 3 (𝐴 ∈ On β†’ 𝐴 β‰ˆ 𝐴)
2 breq1 4007 . . . 4 (𝑦 = 𝐴 β†’ (𝑦 β‰ˆ 𝐴 ↔ 𝐴 β‰ˆ 𝐴))
32rspcev 2842 . . 3 ((𝐴 ∈ On ∧ 𝐴 β‰ˆ 𝐴) β†’ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ 𝐴)
41, 3mpdan 421 . 2 (𝐴 ∈ On β†’ βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ 𝐴)
5 cardval3ex 7184 . 2 (βˆƒπ‘¦ ∈ On 𝑦 β‰ˆ 𝐴 β†’ (cardβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
64, 5syl 14 1 (𝐴 ∈ On β†’ (cardβ€˜π΄) = ∩ {π‘₯ ∈ On ∣ π‘₯ β‰ˆ 𝐴})
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   = wceq 1353   ∈ wcel 2148  βˆƒwrex 2456  {crab 2459  βˆ© cint 3845   class class class wbr 4004  Oncon0 4364  β€˜cfv 5217   β‰ˆ cen 6738  cardccrd 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-en 6741  df-card 7179
This theorem is referenced by:  cardonle  7186
  Copyright terms: Public domain W3C validator