![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oncardval | GIF version |
Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
oncardval | ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 6479 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | breq1 3848 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝐴 ↔ 𝐴 ≈ 𝐴)) | |
3 | 2 | rspcev 2722 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
4 | 1, 3 | mpdan 412 | . 2 ⊢ (𝐴 ∈ On → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
5 | cardval3ex 6811 | . 2 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 ∃wrex 2360 {crab 2363 ∩ cint 3688 class class class wbr 3845 Oncon0 4190 ‘cfv 5015 ≈ cen 6453 cardccrd 6805 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-mpt 3901 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-en 6456 df-card 6806 |
This theorem is referenced by: cardonle 6813 |
Copyright terms: Public domain | W3C validator |