| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oncardval | GIF version | ||
| Description: The value of the cardinal number function with an ordinal number as its argument. (Contributed by NM, 24-Nov-2003.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| oncardval | ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 6885 | . . 3 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | breq1 4065 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝐴 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 2887 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐴) → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 4 | 1, 3 | mpdan 421 | . 2 ⊢ (𝐴 ∈ On → ∃𝑦 ∈ On 𝑦 ≈ 𝐴) |
| 5 | cardval3ex 7325 | . 2 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐴 → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (𝐴 ∈ On → (card‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ∃wrex 2489 {crab 2492 ∩ cint 3902 class class class wbr 4062 Oncon0 4431 ‘cfv 5294 ≈ cen 6855 cardccrd 7317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-en 6858 df-card 7319 |
| This theorem is referenced by: cardonle 7327 |
| Copyright terms: Public domain | W3C validator |