ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fict Unicode version

Theorem fict 6728
Description: A finite set is dominated by  om. Also see finct 6967. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fict  |-  ( A  e.  Fin  ->  A  ~<_  om )

Proof of Theorem fict
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 isfi 6621 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 simprr 504 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
4 omex 4475 . . . . 5  |-  om  e.  _V
5 ordom 4488 . . . . . 6  |-  Ord  om
6 ordelss 4269 . . . . . 6  |-  ( ( Ord  om  /\  n  e.  om )  ->  n  C_ 
om )
75, 6mpan 418 . . . . 5  |-  ( n  e.  om  ->  n  C_ 
om )
8 ssdomg 6638 . . . . 5  |-  ( om  e.  _V  ->  (
n  C_  om  ->  n  ~<_  om ) )
94, 7, 8mpsyl 65 . . . 4  |-  ( n  e.  om  ->  n  ~<_  om )
109ad2antrl 479 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  ~<_  om )
11 endomtr 6650 . . 3  |-  ( ( A  ~~  n  /\  n  ~<_  om )  ->  A  ~<_  om )
123, 10, 11syl2anc 406 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~<_  om )
132, 12rexlimddv 2529 1  |-  ( A  e.  Fin  ->  A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1463   E.wrex 2392   _Vcvv 2658    C_ wss 3039   class class class wbr 3897   Ord word 4252   omcom 4472    ~~ cen 6598    ~<_ cdom 6599   Fincfn 6600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-tr 3995  df-id 4183  df-iord 4256  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-en 6601  df-dom 6602  df-fin 6603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator