ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fict Unicode version

Theorem fict 6967
Description: A finite set is dominated by  om. Also see finct 7220. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Assertion
Ref Expression
fict  |-  ( A  e.  Fin  ->  A  ~<_  om )

Proof of Theorem fict
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 isfi 6854 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 simprr 531 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
4 omex 4642 . . . . 5  |-  om  e.  _V
5 ordom 4656 . . . . . 6  |-  Ord  om
6 ordelss 4427 . . . . . 6  |-  ( ( Ord  om  /\  n  e.  om )  ->  n  C_ 
om )
75, 6mpan 424 . . . . 5  |-  ( n  e.  om  ->  n  C_ 
om )
8 ssdomg 6872 . . . . 5  |-  ( om  e.  _V  ->  (
n  C_  om  ->  n  ~<_  om ) )
94, 7, 8mpsyl 65 . . . 4  |-  ( n  e.  om  ->  n  ~<_  om )
109ad2antrl 490 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  ~<_  om )
11 endomtr 6884 . . 3  |-  ( ( A  ~~  n  /\  n  ~<_  om )  ->  A  ~<_  om )
123, 10, 11syl2anc 411 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~<_  om )
132, 12rexlimddv 2628 1  |-  ( A  e.  Fin  ->  A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   E.wrex 2485   _Vcvv 2772    C_ wss 3166   class class class wbr 4045   Ord word 4410   omcom 4639    ~~ cen 6827    ~<_ cdom 6828   Fincfn 6829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-tr 4144  df-id 4341  df-iord 4414  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-en 6830  df-dom 6831  df-fin 6832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator