ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnfi Unicode version

Theorem infnfi 6873
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
infnfi  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )

Proof of Theorem infnfi
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 isfi 6739 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantl 275 . . 3  |-  ( ( om  ~<_  A  /\  A  e.  Fin )  ->  E. n  e.  om  A  ~~  n
)
4 omex 4577 . . . . . 6  |-  om  e.  _V
5 ordom 4591 . . . . . . 7  |-  Ord  om
6 peano2 4579 . . . . . . . 8  |-  ( n  e.  om  ->  suc  n  e.  om )
76ad2antrl 487 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  e. 
om )
8 ordelss 4364 . . . . . . 7  |-  ( ( Ord  om  /\  suc  n  e.  om )  ->  suc  n  C_  om )
95, 7, 8sylancr 412 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  C_  om )
10 ssdomg 6756 . . . . . 6  |-  ( om  e.  _V  ->  ( suc  n  C_  om  ->  suc  n  ~<_  om ) )
114, 9, 10mpsyl 65 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  ~<_  om )
12 domentr 6769 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  ~~  n )  ->  om  ~<_  n )
1312ad2ant2rl 508 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  om  ~<_  n )
14 domtr 6763 . . . . 5  |-  ( ( suc  n  ~<_  om  /\  om  ~<_  n )  ->  suc  n  ~<_  n )
1511, 13, 14syl2anc 409 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  ~<_  n )
16 php5dom 6841 . . . . 5  |-  ( n  e.  om  ->  -.  suc  n  ~<_  n )
1716ad2antrl 487 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  -.  suc  n  ~<_  n )
1815, 17pm2.21dd 615 . . 3  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  -.  A  e.  Fin )
193, 18rexlimddv 2592 . 2  |-  ( ( om  ~<_  A  /\  A  e.  Fin )  ->  -.  A  e.  Fin )
2019pm2.01da 631 1  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 2141   E.wrex 2449   _Vcvv 2730    C_ wss 3121   class class class wbr 3989   Ord word 4347   suc csuc 4350   omcom 4574    ~~ cen 6716    ~<_ cdom 6717   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721
This theorem is referenced by:  ominf  6874  hashennnuni  10713
  Copyright terms: Public domain W3C validator