| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infnfi | Unicode version | ||
| Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| Ref | Expression |
|---|---|
| infnfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6862 |
. . . . 5
| |
| 2 | 1 | biimpi 120 |
. . . 4
|
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | omex 4646 |
. . . . . 6
| |
| 5 | ordom 4660 |
. . . . . . 7
| |
| 6 | peano2 4648 |
. . . . . . . 8
| |
| 7 | 6 | ad2antrl 490 |
. . . . . . 7
|
| 8 | ordelss 4431 |
. . . . . . 7
| |
| 9 | 5, 7, 8 | sylancr 414 |
. . . . . 6
|
| 10 | ssdomg 6880 |
. . . . . 6
| |
| 11 | 4, 9, 10 | mpsyl 65 |
. . . . 5
|
| 12 | domentr 6893 |
. . . . . 6
| |
| 13 | 12 | ad2ant2rl 511 |
. . . . 5
|
| 14 | domtr 6887 |
. . . . 5
| |
| 15 | 11, 13, 14 | syl2anc 411 |
. . . 4
|
| 16 | php5dom 6972 |
. . . . 5
| |
| 17 | 16 | ad2antrl 490 |
. . . 4
|
| 18 | 15, 17 | pm2.21dd 621 |
. . 3
|
| 19 | 3, 18 | rexlimddv 2629 |
. 2
|
| 20 | 19 | pm2.01da 637 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-er 6630 df-en 6838 df-dom 6839 df-fin 6840 |
| This theorem is referenced by: ominf 7005 hashennnuni 10937 |
| Copyright terms: Public domain | W3C validator |