ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnfi Unicode version

Theorem infnfi 7004
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
infnfi  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )

Proof of Theorem infnfi
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 isfi 6862 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantl 277 . . 3  |-  ( ( om  ~<_  A  /\  A  e.  Fin )  ->  E. n  e.  om  A  ~~  n
)
4 omex 4646 . . . . . 6  |-  om  e.  _V
5 ordom 4660 . . . . . . 7  |-  Ord  om
6 peano2 4648 . . . . . . . 8  |-  ( n  e.  om  ->  suc  n  e.  om )
76ad2antrl 490 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  e. 
om )
8 ordelss 4431 . . . . . . 7  |-  ( ( Ord  om  /\  suc  n  e.  om )  ->  suc  n  C_  om )
95, 7, 8sylancr 414 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  C_  om )
10 ssdomg 6880 . . . . . 6  |-  ( om  e.  _V  ->  ( suc  n  C_  om  ->  suc  n  ~<_  om ) )
114, 9, 10mpsyl 65 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  ~<_  om )
12 domentr 6893 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  ~~  n )  ->  om  ~<_  n )
1312ad2ant2rl 511 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  om  ~<_  n )
14 domtr 6887 . . . . 5  |-  ( ( suc  n  ~<_  om  /\  om  ~<_  n )  ->  suc  n  ~<_  n )
1511, 13, 14syl2anc 411 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  ~<_  n )
16 php5dom 6972 . . . . 5  |-  ( n  e.  om  ->  -.  suc  n  ~<_  n )
1716ad2antrl 490 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  -.  suc  n  ~<_  n )
1815, 17pm2.21dd 621 . . 3  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  -.  A  e.  Fin )
193, 18rexlimddv 2629 . 2  |-  ( ( om  ~<_  A  /\  A  e.  Fin )  ->  -.  A  e.  Fin )
2019pm2.01da 637 1  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2177   E.wrex 2486   _Vcvv 2773    C_ wss 3168   class class class wbr 4048   Ord word 4414   suc csuc 4417   omcom 4643    ~~ cen 6835    ~<_ cdom 6836   Fincfn 6837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840
This theorem is referenced by:  ominf  7005  hashennnuni  10937
  Copyright terms: Public domain W3C validator