ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnfi Unicode version

Theorem infnfi 6895
Description: An infinite set is not finite. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
infnfi  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )

Proof of Theorem infnfi
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 isfi 6761 . . . . 5  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . . 4  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
32adantl 277 . . 3  |-  ( ( om  ~<_  A  /\  A  e.  Fin )  ->  E. n  e.  om  A  ~~  n
)
4 omex 4593 . . . . . 6  |-  om  e.  _V
5 ordom 4607 . . . . . . 7  |-  Ord  om
6 peano2 4595 . . . . . . . 8  |-  ( n  e.  om  ->  suc  n  e.  om )
76ad2antrl 490 . . . . . . 7  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  e. 
om )
8 ordelss 4380 . . . . . . 7  |-  ( ( Ord  om  /\  suc  n  e.  om )  ->  suc  n  C_  om )
95, 7, 8sylancr 414 . . . . . 6  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  C_  om )
10 ssdomg 6778 . . . . . 6  |-  ( om  e.  _V  ->  ( suc  n  C_  om  ->  suc  n  ~<_  om ) )
114, 9, 10mpsyl 65 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  ~<_  om )
12 domentr 6791 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  ~~  n )  ->  om  ~<_  n )
1312ad2ant2rl 511 . . . . 5  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  om  ~<_  n )
14 domtr 6785 . . . . 5  |-  ( ( suc  n  ~<_  om  /\  om  ~<_  n )  ->  suc  n  ~<_  n )
1511, 13, 14syl2anc 411 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  suc  n  ~<_  n )
16 php5dom 6863 . . . . 5  |-  ( n  e.  om  ->  -.  suc  n  ~<_  n )
1716ad2antrl 490 . . . 4  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  -.  suc  n  ~<_  n )
1815, 17pm2.21dd 620 . . 3  |-  ( ( ( om  ~<_  A  /\  A  e.  Fin )  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  -.  A  e.  Fin )
193, 18rexlimddv 2599 . 2  |-  ( ( om  ~<_  A  /\  A  e.  Fin )  ->  -.  A  e.  Fin )
2019pm2.01da 636 1  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2148   E.wrex 2456   _Vcvv 2738    C_ wss 3130   class class class wbr 4004   Ord word 4363   suc csuc 4366   omcom 4590    ~~ cen 6738    ~<_ cdom 6739   Fincfn 6740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743
This theorem is referenced by:  ominf  6896  hashennnuni  10759
  Copyright terms: Public domain W3C validator