ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmsscl Unicode version

Theorem mgmsscl 13063
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b  |-  B  =  ( Base `  G
)
mgmsscl.s  |-  S  =  ( Base `  H
)
Assertion
Ref Expression
mgmsscl  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  G ) Y )  e.  S )

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 6067 . . 3  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  =  ( X ( +g  `  G ) Y ) )
213ad2ant3 1022 . 2  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  =  ( X ( +g  `  G ) Y ) )
3 simp1r 1024 . . . . 5  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  ->  H  e. Mgm )
4 simp3 1001 . . . . 5  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X  e.  S  /\  Y  e.  S
) )
5 3anass 984 . . . . 5  |-  ( ( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )  <->  ( H  e. Mgm  /\  ( X  e.  S  /\  Y  e.  S ) ) )
63, 4, 5sylanbrc 417 . . . 4  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )
)
7 mgmsscl.s . . . . 5  |-  S  =  ( Base `  H
)
8 eqid 2196 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
97, 8mgmcl 13061 . . . 4  |-  ( ( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  H
) Y )  e.  S )
106, 9syl 14 . . 3  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  H ) Y )  e.  S )
11 oveq 5931 . . . . . . 7  |-  ( ( ( +g  `  G
)  |`  ( S  X.  S ) )  =  ( +g  `  H
)  ->  ( X
( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  =  ( X ( +g  `  H
) Y ) )
1211eleq1d 2265 . . . . . 6  |-  ( ( ( +g  `  G
)  |`  ( S  X.  S ) )  =  ( +g  `  H
)  ->  ( ( X ( ( +g  `  G )  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X ( +g  `  H
) Y )  e.  S ) )
1312eqcoms 2199 . . . . 5  |-  ( ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) )  ->  ( ( X ( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X
( +g  `  H ) Y )  e.  S
) )
1413adantl 277 . . . 4  |-  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  ( ( X ( ( +g  `  G )  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X ( +g  `  H
) Y )  e.  S ) )
15143ad2ant2 1021 . . 3  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( ( X ( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X
( +g  `  H ) Y )  e.  S
) )
1610, 15mpbird 167 . 2  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  e.  S )
172, 16eqeltrrd 2274 1  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  G ) Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157    X. cxp 4662    |` cres 4666   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780  Mgmcmgm 13056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mgm 13058
This theorem is referenced by:  mndissubm  13177  grpissubg  13400
  Copyright terms: Public domain W3C validator