ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmsscl Unicode version

Theorem mgmsscl 12785
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b  |-  B  =  ( Base `  G
)
mgmsscl.s  |-  S  =  ( Base `  H
)
Assertion
Ref Expression
mgmsscl  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  G ) Y )  e.  S )

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 6016 . . 3  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  =  ( X ( +g  `  G ) Y ) )
213ad2ant3 1020 . 2  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  =  ( X ( +g  `  G ) Y ) )
3 simp1r 1022 . . . . 5  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  ->  H  e. Mgm )
4 simp3 999 . . . . 5  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X  e.  S  /\  Y  e.  S
) )
5 3anass 982 . . . . 5  |-  ( ( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )  <->  ( H  e. Mgm  /\  ( X  e.  S  /\  Y  e.  S ) ) )
63, 4, 5sylanbrc 417 . . . 4  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )
)
7 mgmsscl.s . . . . 5  |-  S  =  ( Base `  H
)
8 eqid 2177 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
97, 8mgmcl 12783 . . . 4  |-  ( ( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  H
) Y )  e.  S )
106, 9syl 14 . . 3  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  H ) Y )  e.  S )
11 oveq 5883 . . . . . . 7  |-  ( ( ( +g  `  G
)  |`  ( S  X.  S ) )  =  ( +g  `  H
)  ->  ( X
( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  =  ( X ( +g  `  H
) Y ) )
1211eleq1d 2246 . . . . . 6  |-  ( ( ( +g  `  G
)  |`  ( S  X.  S ) )  =  ( +g  `  H
)  ->  ( ( X ( ( +g  `  G )  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X ( +g  `  H
) Y )  e.  S ) )
1312eqcoms 2180 . . . . 5  |-  ( ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) )  ->  ( ( X ( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X
( +g  `  H ) Y )  e.  S
) )
1413adantl 277 . . . 4  |-  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  ( ( X ( ( +g  `  G )  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X ( +g  `  H
) Y )  e.  S ) )
15143ad2ant2 1019 . . 3  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( ( X ( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X
( +g  `  H ) Y )  e.  S
) )
1610, 15mpbird 167 . 2  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  e.  S )
172, 16eqeltrrd 2255 1  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  G ) Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148    C_ wss 3131    X. cxp 4626    |` cres 4630   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538  Mgmcmgm 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mgm 12780
This theorem is referenced by:  mndissubm  12871  grpissubg  13059
  Copyright terms: Public domain W3C validator