| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmsscl | Unicode version | ||
| Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| mgmsscl.b |
|
| mgmsscl.s |
|
| Ref | Expression |
|---|---|
| mgmsscl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres 6063 |
. . 3
| |
| 2 | 1 | 3ad2ant3 1022 |
. 2
|
| 3 | simp1r 1024 |
. . . . 5
| |
| 4 | simp3 1001 |
. . . . 5
| |
| 5 | 3anass 984 |
. . . . 5
| |
| 6 | 3, 4, 5 | sylanbrc 417 |
. . . 4
|
| 7 | mgmsscl.s |
. . . . 5
| |
| 8 | eqid 2196 |
. . . . 5
| |
| 9 | 7, 8 | mgmcl 13002 |
. . . 4
|
| 10 | 6, 9 | syl 14 |
. . 3
|
| 11 | oveq 5928 |
. . . . . . 7
| |
| 12 | 11 | eleq1d 2265 |
. . . . . 6
|
| 13 | 12 | eqcoms 2199 |
. . . . 5
|
| 14 | 13 | adantl 277 |
. . . 4
|
| 15 | 14 | 3ad2ant2 1021 |
. . 3
|
| 16 | 10, 15 | mpbird 167 |
. 2
|
| 17 | 2, 16 | eqeltrrd 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mgm 12999 |
| This theorem is referenced by: mndissubm 13107 grpissubg 13324 |
| Copyright terms: Public domain | W3C validator |