ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmsscl Unicode version

Theorem mgmsscl 13394
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b  |-  B  =  ( Base `  G
)
mgmsscl.s  |-  S  =  ( Base `  H
)
Assertion
Ref Expression
mgmsscl  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  G ) Y )  e.  S )

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 6145 . . 3  |-  ( ( X  e.  S  /\  Y  e.  S )  ->  ( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  =  ( X ( +g  `  G ) Y ) )
213ad2ant3 1044 . 2  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  =  ( X ( +g  `  G ) Y ) )
3 simp1r 1046 . . . . 5  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  ->  H  e. Mgm )
4 simp3 1023 . . . . 5  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X  e.  S  /\  Y  e.  S
) )
5 3anass 1006 . . . . 5  |-  ( ( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )  <->  ( H  e. Mgm  /\  ( X  e.  S  /\  Y  e.  S ) ) )
63, 4, 5sylanbrc 417 . . . 4  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )
)
7 mgmsscl.s . . . . 5  |-  S  =  ( Base `  H
)
8 eqid 2229 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
97, 8mgmcl 13392 . . . 4  |-  ( ( H  e. Mgm  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  H
) Y )  e.  S )
106, 9syl 14 . . 3  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  H ) Y )  e.  S )
11 oveq 6007 . . . . . . 7  |-  ( ( ( +g  `  G
)  |`  ( S  X.  S ) )  =  ( +g  `  H
)  ->  ( X
( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  =  ( X ( +g  `  H
) Y ) )
1211eleq1d 2298 . . . . . 6  |-  ( ( ( +g  `  G
)  |`  ( S  X.  S ) )  =  ( +g  `  H
)  ->  ( ( X ( ( +g  `  G )  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X ( +g  `  H
) Y )  e.  S ) )
1312eqcoms 2232 . . . . 5  |-  ( ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) )  ->  ( ( X ( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X
( +g  `  H ) Y )  e.  S
) )
1413adantl 277 . . . 4  |-  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  ( ( X ( ( +g  `  G )  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X ( +g  `  H
) Y )  e.  S ) )
15143ad2ant2 1043 . . 3  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( ( X ( ( +g  `  G
)  |`  ( S  X.  S ) ) Y )  e.  S  <->  ( X
( +g  `  H ) Y )  e.  S
) )
1610, 15mpbird 167 . 2  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( ( +g  `  G )  |`  ( S  X.  S
) ) Y )  e.  S )
172, 16eqeltrrd 2307 1  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( X  e.  S  /\  Y  e.  S ) )  -> 
( X ( +g  `  G ) Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197    X. cxp 4717    |` cres 4721   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Mgmcmgm 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mgm 13389
This theorem is referenced by:  mndissubm  13508  grpissubg  13731
  Copyright terms: Public domain W3C validator