ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvl Unicode version

Theorem genpelvl 7660
Description: Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpelvl  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
Distinct variable groups:    x, y, z, g, h, w, v, A    x, B, y, z, g, h, w, v    x, G, y, z, g, h, w, v    g, F    C, g, h
Allowed substitution hints:    C( x, y, z, w, v)    F( x, y, z, w, v, h)

Proof of Theorem genpelvl
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genipv 7657 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  =  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )
43fveq2d 5603 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1st `  ( A F B ) )  =  ( 1st `  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) } ,  {
f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) } >. )
)
5 nqex 7511 . . . . . . 7  |-  Q.  e.  _V
65rabex 4204 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  e.  _V
75rabex 4204 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) }  e.  _V
86, 7op1st 6255 . . . . 5  |-  ( 1st `  <. { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )  =  {
f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) }
94, 8eqtrdi 2256 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1st `  ( A F B ) )  =  { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } )
109eleq2d 2277 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <-> 
C  e.  { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ) )
11 elrabi 2933 . . 3  |-  ( C  e.  { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  ->  C  e.  Q. )
1210, 11biimtrdi 163 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  ->  C  e.  Q. ) )
13 prop 7623 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
14 elprnql 7629 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  g  e.  ( 1st `  A ) )  -> 
g  e.  Q. )
1513, 14sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  -> 
g  e.  Q. )
16 prop 7623 . . . . . . 7  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
17 elprnql 7629 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  h  e.  ( 1st `  B ) )  ->  h  e.  Q. )
1816, 17sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  h  e.  ( 1st `  B ) )  ->  h  e.  Q. )
192caovcl 6124 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g G h )  e.  Q. )
2015, 18, 19syl2an 289 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) )  ->  ( g G h )  e.  Q. )
2120an4s 588 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 1st `  A )  /\  h  e.  ( 1st `  B ) ) )  ->  (
g G h )  e.  Q. )
22 eleq1 2270 . . . 4  |-  ( C  =  ( g G h )  ->  ( C  e.  Q.  <->  ( g G h )  e. 
Q. ) )
2321, 22syl5ibrcom 157 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 1st `  A )  /\  h  e.  ( 1st `  B ) ) )  ->  ( C  =  ( g G h )  ->  C  e.  Q. )
)
2423rexlimdvva 2633 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) C  =  ( g G h )  ->  C  e.  Q. ) )
25 eqeq1 2214 . . . . . 6  |-  ( f  =  C  ->  (
f  =  ( g G h )  <->  C  =  ( g G h ) ) )
26252rexbidv 2533 . . . . 5  |-  ( f  =  C  ->  ( E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2726elrab3 2937 . . . 4  |-  ( C  e.  Q.  ->  ( C  e.  { f  e.  Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2810, 27sylan9bb 462 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  C  e.  Q. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2928ex 115 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  Q.  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) ) )
3012, 24, 29pm5.21ndd 707 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   {crab 2490   <.cop 3646   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428   P.cnp 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-qs 6649  df-ni 7452  df-nqqs 7496  df-inp 7614
This theorem is referenced by:  genpprecll  7662  genpcdl  7667  genprndl  7669  genpdisj  7671  genpassl  7672  addnqprlemrl  7705  mulnqprlemrl  7721  distrlem1prl  7730  distrlem5prl  7734  1idprl  7738  ltexprlemfl  7757  recexprlem1ssl  7781  recexprlemss1l  7783  cauappcvgprlemladdfl  7803
  Copyright terms: Public domain W3C validator