ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvl Unicode version

Theorem genpelvl 7579
Description: Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpelvl  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
Distinct variable groups:    x, y, z, g, h, w, v, A    x, B, y, z, g, h, w, v    x, G, y, z, g, h, w, v    g, F    C, g, h
Allowed substitution hints:    C( x, y, z, w, v)    F( x, y, z, w, v, h)

Proof of Theorem genpelvl
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genipv 7576 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  =  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )
43fveq2d 5562 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1st `  ( A F B ) )  =  ( 1st `  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) } ,  {
f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) } >. )
)
5 nqex 7430 . . . . . . 7  |-  Q.  e.  _V
65rabex 4177 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  e.  _V
75rabex 4177 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) }  e.  _V
86, 7op1st 6204 . . . . 5  |-  ( 1st `  <. { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )  =  {
f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) }
94, 8eqtrdi 2245 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1st `  ( A F B ) )  =  { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } )
109eleq2d 2266 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <-> 
C  e.  { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ) )
11 elrabi 2917 . . 3  |-  ( C  e.  { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  ->  C  e.  Q. )
1210, 11biimtrdi 163 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  ->  C  e.  Q. ) )
13 prop 7542 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
14 elprnql 7548 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  g  e.  ( 1st `  A ) )  -> 
g  e.  Q. )
1513, 14sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  -> 
g  e.  Q. )
16 prop 7542 . . . . . . 7  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
17 elprnql 7548 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  h  e.  ( 1st `  B ) )  ->  h  e.  Q. )
1816, 17sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  h  e.  ( 1st `  B ) )  ->  h  e.  Q. )
192caovcl 6078 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g G h )  e.  Q. )
2015, 18, 19syl2an 289 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) )  ->  ( g G h )  e.  Q. )
2120an4s 588 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 1st `  A )  /\  h  e.  ( 1st `  B ) ) )  ->  (
g G h )  e.  Q. )
22 eleq1 2259 . . . 4  |-  ( C  =  ( g G h )  ->  ( C  e.  Q.  <->  ( g G h )  e. 
Q. ) )
2321, 22syl5ibrcom 157 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 1st `  A )  /\  h  e.  ( 1st `  B ) ) )  ->  ( C  =  ( g G h )  ->  C  e.  Q. )
)
2423rexlimdvva 2622 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) C  =  ( g G h )  ->  C  e.  Q. ) )
25 eqeq1 2203 . . . . . 6  |-  ( f  =  C  ->  (
f  =  ( g G h )  <->  C  =  ( g G h ) ) )
26252rexbidv 2522 . . . . 5  |-  ( f  =  C  ->  ( E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2726elrab3 2921 . . . 4  |-  ( C  e.  Q.  ->  ( C  e.  { f  e.  Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2810, 27sylan9bb 462 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  C  e.  Q. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2928ex 115 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  Q.  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) ) )
3012, 24, 29pm5.21ndd 706 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   {crab 2479   <.cop 3625   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347   P.cnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-qs 6598  df-ni 7371  df-nqqs 7415  df-inp 7533
This theorem is referenced by:  genpprecll  7581  genpcdl  7586  genprndl  7588  genpdisj  7590  genpassl  7591  addnqprlemrl  7624  mulnqprlemrl  7640  distrlem1prl  7649  distrlem5prl  7653  1idprl  7657  ltexprlemfl  7676  recexprlem1ssl  7700  recexprlemss1l  7702  cauappcvgprlemladdfl  7722
  Copyright terms: Public domain W3C validator