ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvl Unicode version

Theorem genpelvl 7572
Description: Membership in lower cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpelvl  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
Distinct variable groups:    x, y, z, g, h, w, v, A    x, B, y, z, g, h, w, v    x, G, y, z, g, h, w, v    g, F    C, g, h
Allowed substitution hints:    C( x, y, z, w, v)    F( x, y, z, w, v, h)

Proof of Theorem genpelvl
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genipv 7569 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  =  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )
43fveq2d 5558 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1st `  ( A F B ) )  =  ( 1st `  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) } ,  {
f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) } >. )
)
5 nqex 7423 . . . . . . 7  |-  Q.  e.  _V
65rabex 4173 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  e.  _V
75rabex 4173 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) }  e.  _V
86, 7op1st 6199 . . . . 5  |-  ( 1st `  <. { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )  =  {
f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) }
94, 8eqtrdi 2242 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1st `  ( A F B ) )  =  { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } )
109eleq2d 2263 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <-> 
C  e.  { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ) )
11 elrabi 2913 . . 3  |-  ( C  e.  { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  ->  C  e.  Q. )
1210, 11biimtrdi 163 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  ->  C  e.  Q. ) )
13 prop 7535 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
14 elprnql 7541 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  g  e.  ( 1st `  A ) )  -> 
g  e.  Q. )
1513, 14sylan 283 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  -> 
g  e.  Q. )
16 prop 7535 . . . . . . 7  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
17 elprnql 7541 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  h  e.  ( 1st `  B ) )  ->  h  e.  Q. )
1816, 17sylan 283 . . . . . 6  |-  ( ( B  e.  P.  /\  h  e.  ( 1st `  B ) )  ->  h  e.  Q. )
192caovcl 6073 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g G h )  e.  Q. )
2015, 18, 19syl2an 289 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) )  ->  ( g G h )  e.  Q. )
2120an4s 588 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 1st `  A )  /\  h  e.  ( 1st `  B ) ) )  ->  (
g G h )  e.  Q. )
22 eleq1 2256 . . . 4  |-  ( C  =  ( g G h )  ->  ( C  e.  Q.  <->  ( g G h )  e. 
Q. ) )
2321, 22syl5ibrcom 157 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 1st `  A )  /\  h  e.  ( 1st `  B ) ) )  ->  ( C  =  ( g G h )  ->  C  e.  Q. )
)
2423rexlimdvva 2619 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) C  =  ( g G h )  ->  C  e.  Q. ) )
25 eqeq1 2200 . . . . . 6  |-  ( f  =  C  ->  (
f  =  ( g G h )  <->  C  =  ( g G h ) ) )
26252rexbidv 2519 . . . . 5  |-  ( f  =  C  ->  ( E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2726elrab3 2917 . . . 4  |-  ( C  e.  Q.  ->  ( C  e.  { f  e.  Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2810, 27sylan9bb 462 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  C  e.  Q. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
2928ex 115 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  Q.  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) ) )
3012, 24, 29pm5.21ndd 706 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) C  =  ( g G h ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   {crab 2476   <.cop 3621   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340   P.cnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-qs 6593  df-ni 7364  df-nqqs 7408  df-inp 7526
This theorem is referenced by:  genpprecll  7574  genpcdl  7579  genprndl  7581  genpdisj  7583  genpassl  7584  addnqprlemrl  7617  mulnqprlemrl  7633  distrlem1prl  7642  distrlem5prl  7646  1idprl  7650  ltexprlemfl  7669  recexprlem1ssl  7693  recexprlemss1l  7695  cauappcvgprlemladdfl  7715
  Copyright terms: Public domain W3C validator