ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelvu Unicode version

Theorem genpelvu 7464
Description: Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpelvu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) )
Distinct variable groups:    x, y, z, g, h, w, v, A    x, B, y, z, g, h, w, v    x, G, y, z, g, h, w, v    g, F    C, g, h
Allowed substitution hints:    C( x, y, z, w, v)    F( x, y, z, w, v, h)

Proof of Theorem genpelvu
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . 7  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genipv 7460 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  =  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )
43fveq2d 5498 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 2nd `  ( A F B ) )  =  ( 2nd `  <. { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) } ,  {
f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) } >. )
)
5 nqex 7314 . . . . . . 7  |-  Q.  e.  _V
65rabex 4131 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B
) f  =  ( g G h ) }  e.  _V
75rabex 4131 . . . . . 6  |-  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) }  e.  _V
86, 7op2nd 6124 . . . . 5  |-  ( 2nd `  <. { f  e. 
Q.  |  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h ) } ,  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } >. )  =  {
f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h ) }
94, 8eqtrdi 2219 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 2nd `  ( A F B ) )  =  { f  e. 
Q.  |  E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } )
109eleq2d 2240 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 2nd `  ( A F B ) )  <-> 
C  e.  { f  e.  Q.  |  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) } ) )
11 elrabi 2883 . . 3  |-  ( C  e.  { f  e. 
Q.  |  E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) }  ->  C  e.  Q. )
1210, 11syl6bi 162 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 2nd `  ( A F B ) )  ->  C  e.  Q. ) )
13 prop 7426 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
14 elprnqu 7433 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  g  e.  ( 2nd `  A ) )  -> 
g  e.  Q. )
1513, 14sylan 281 . . . . . 6  |-  ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  -> 
g  e.  Q. )
16 prop 7426 . . . . . . 7  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
17 elprnqu 7433 . . . . . . 7  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  h  e.  ( 2nd `  B ) )  ->  h  e.  Q. )
1816, 17sylan 281 . . . . . 6  |-  ( ( B  e.  P.  /\  h  e.  ( 2nd `  B ) )  ->  h  e.  Q. )
192caovcl 6005 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g G h )  e.  Q. )
2015, 18, 19syl2an 287 . . . . 5  |-  ( ( ( A  e.  P.  /\  g  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 2nd `  B ) ) )  ->  ( g G h )  e.  Q. )
2120an4s 583 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 2nd `  A )  /\  h  e.  ( 2nd `  B ) ) )  ->  (
g G h )  e.  Q. )
22 eleq1 2233 . . . 4  |-  ( C  =  ( g G h )  ->  ( C  e.  Q.  <->  ( g G h )  e. 
Q. ) )
2321, 22syl5ibrcom 156 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 2nd `  A )  /\  h  e.  ( 2nd `  B ) ) )  ->  ( C  =  ( g G h )  ->  C  e.  Q. )
)
2423rexlimdvva 2595 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) C  =  ( g G h )  ->  C  e.  Q. ) )
25 eqeq1 2177 . . . . . 6  |-  ( f  =  C  ->  (
f  =  ( g G h )  <->  C  =  ( g G h ) ) )
26252rexbidv 2495 . . . . 5  |-  ( f  =  C  ->  ( E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) f  =  ( g G h )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) )
2726elrab3 2887 . . . 4  |-  ( C  e.  Q.  ->  ( C  e.  { f  e.  Q.  |  E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) f  =  ( g G h ) }  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) )
2810, 27sylan9bb 459 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  C  e.  Q. )  ->  ( C  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) )
2928ex 114 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  Q.  ->  ( C  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) ) )
3012, 24, 29pm5.21ndd 700 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) C  =  ( g G h ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449   {crab 2452   <.cop 3584   ` cfv 5196  (class class class)co 5851    e. cmpo 5853   1stc1st 6115   2ndc2nd 6116   Q.cnq 7231   P.cnp 7242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-qs 6516  df-ni 7255  df-nqqs 7299  df-inp 7417
This theorem is referenced by:  genppreclu  7466  genpcuu  7471  genprndu  7473  genpdisj  7474  genpassu  7476  addnqprlemru  7509  mulnqprlemru  7525  distrlem1pru  7534  distrlem5pru  7538  1idpru  7542  ltexprlemfu  7562  recexprlem1ssu  7585  recexprlemss1u  7587  cauappcvgprlemladdfu  7605  caucvgprlemladdfu  7628
  Copyright terms: Public domain W3C validator