Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > genpelvu | Unicode version |
Description: Membership in upper cut of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingdon, 15-Oct-2019.) |
Ref | Expression |
---|---|
genpelvl.1 | |
genpelvl.2 |
Ref | Expression |
---|---|
genpelvu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genpelvl.1 | . . . . . . 7 | |
2 | genpelvl.2 | . . . . . . 7 | |
3 | 1, 2 | genipv 7460 | . . . . . 6 |
4 | 3 | fveq2d 5498 | . . . . 5 |
5 | nqex 7314 | . . . . . . 7 | |
6 | 5 | rabex 4131 | . . . . . 6 |
7 | 5 | rabex 4131 | . . . . . 6 |
8 | 6, 7 | op2nd 6124 | . . . . 5 |
9 | 4, 8 | eqtrdi 2219 | . . . 4 |
10 | 9 | eleq2d 2240 | . . 3 |
11 | elrabi 2883 | . . 3 | |
12 | 10, 11 | syl6bi 162 | . 2 |
13 | prop 7426 | . . . . . . 7 | |
14 | elprnqu 7433 | . . . . . . 7 | |
15 | 13, 14 | sylan 281 | . . . . . 6 |
16 | prop 7426 | . . . . . . 7 | |
17 | elprnqu 7433 | . . . . . . 7 | |
18 | 16, 17 | sylan 281 | . . . . . 6 |
19 | 2 | caovcl 6005 | . . . . . 6 |
20 | 15, 18, 19 | syl2an 287 | . . . . 5 |
21 | 20 | an4s 583 | . . . 4 |
22 | eleq1 2233 | . . . 4 | |
23 | 21, 22 | syl5ibrcom 156 | . . 3 |
24 | 23 | rexlimdvva 2595 | . 2 |
25 | eqeq1 2177 | . . . . . 6 | |
26 | 25 | 2rexbidv 2495 | . . . . 5 |
27 | 26 | elrab3 2887 | . . . 4 |
28 | 10, 27 | sylan9bb 459 | . . 3 |
29 | 28 | ex 114 | . 2 |
30 | 12, 24, 29 | pm5.21ndd 700 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 crab 2452 cop 3584 cfv 5196 (class class class)co 5851 cmpo 5853 c1st 6115 c2nd 6116 cnq 7231 cnp 7242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-qs 6516 df-ni 7255 df-nqqs 7299 df-inp 7417 |
This theorem is referenced by: genppreclu 7466 genpcuu 7471 genprndu 7473 genpdisj 7474 genpassu 7476 addnqprlemru 7509 mulnqprlemru 7525 distrlem1pru 7534 distrlem5pru 7538 1idpru 7542 ltexprlemfu 7562 recexprlem1ssu 7585 recexprlemss1u 7587 cauappcvgprlemladdfu 7605 caucvgprlemladdfu 7628 |
Copyright terms: Public domain | W3C validator |