ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoval Unicode version

Theorem fzoval 10223
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzoval  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )

Proof of Theorem fzoval
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoel1 10220 . . . 4  |-  ( x  e.  ( M..^ N
)  ->  M  e.  ZZ )
21a1i 9 . . 3  |-  ( N  e.  ZZ  ->  (
x  e.  ( M..^ N )  ->  M  e.  ZZ ) )
3 elfzel1 10099 . . . 4  |-  ( x  e.  ( M ... ( N  -  1
) )  ->  M  e.  ZZ )
43a1i 9 . . 3  |-  ( N  e.  ZZ  ->  (
x  e.  ( M ... ( N  - 
1 ) )  ->  M  e.  ZZ )
)
5 peano2zm 9364 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
6 fzf 10087 . . . . . . . 8  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
76fovcl 6028 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( M ... ( N  -  1
) )  e.  ~P ZZ )
85, 7sylan2 286 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... ( N  -  1 ) )  e.  ~P ZZ )
9 id 19 . . . . . . . 8  |-  ( y  =  M  ->  y  =  M )
10 oveq1 5929 . . . . . . . 8  |-  ( z  =  N  ->  (
z  -  1 )  =  ( N  - 
1 ) )
119, 10oveqan12d 5941 . . . . . . 7  |-  ( ( y  =  M  /\  z  =  N )  ->  ( y ... (
z  -  1 ) )  =  ( M ... ( N  - 
1 ) ) )
12 df-fzo 10218 . . . . . . 7  |- ..^  =  ( y  e.  ZZ , 
z  e.  ZZ  |->  ( y ... ( z  -  1 ) ) )
1311, 12ovmpoga 6052 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M ... ( N  - 
1 ) )  e. 
~P ZZ )  -> 
( M..^ N )  =  ( M ... ( N  -  1
) ) )
148, 13mpd3an3 1349 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  =  ( M ... ( N  -  1
) ) )
1514eleq2d 2266 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  e.  ( M..^ N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) )
1615expcom 116 . . 3  |-  ( N  e.  ZZ  ->  ( M  e.  ZZ  ->  ( x  e.  ( M..^ N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) ) )
172, 4, 16pm5.21ndd 706 . 2  |-  ( N  e.  ZZ  ->  (
x  e.  ( M..^ N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) )
1817eqrdv 2194 1  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   ~Pcpw 3605  (class class class)co 5922   1c1 7880    - cmin 8197   ZZcz 9326   ...cfz 10083  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  elfzo  10224  fzodcel  10228  fzon  10242  fzoss1  10247  fzoss2  10248  fzval3  10280  fzo0to2pr  10294  fzo0to3tp  10295  fzo0to42pr  10296  fzoend  10298  fzofzp1b  10304  elfzom1b  10305  peano2fzor  10308  fzoshftral  10314  zmodfzo  10439  zmodidfzo  10445  fzofig  10524  hashfzo  10914  wrdffz  10956  fzosump1  11582  telfsumo  11631  fsumparts  11635  geoserap  11672  geo2sum2  11680  dfphi2  12388  reumodprminv  12422  gsumwsubmcl  13128  gsumwmhm  13130
  Copyright terms: Public domain W3C validator