ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoval Unicode version

Theorem fzoval 10042
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzoval  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )

Proof of Theorem fzoval
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoel1 10039 . . . 4  |-  ( x  e.  ( M..^ N
)  ->  M  e.  ZZ )
21a1i 9 . . 3  |-  ( N  e.  ZZ  ->  (
x  e.  ( M..^ N )  ->  M  e.  ZZ ) )
3 elfzel1 9922 . . . 4  |-  ( x  e.  ( M ... ( N  -  1
) )  ->  M  e.  ZZ )
43a1i 9 . . 3  |-  ( N  e.  ZZ  ->  (
x  e.  ( M ... ( N  - 
1 ) )  ->  M  e.  ZZ )
)
5 peano2zm 9200 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
6 fzf 9911 . . . . . . . 8  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
76fovcl 5923 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( M ... ( N  -  1
) )  e.  ~P ZZ )
85, 7sylan2 284 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... ( N  -  1 ) )  e.  ~P ZZ )
9 id 19 . . . . . . . 8  |-  ( y  =  M  ->  y  =  M )
10 oveq1 5828 . . . . . . . 8  |-  ( z  =  N  ->  (
z  -  1 )  =  ( N  - 
1 ) )
119, 10oveqan12d 5840 . . . . . . 7  |-  ( ( y  =  M  /\  z  =  N )  ->  ( y ... (
z  -  1 ) )  =  ( M ... ( N  - 
1 ) ) )
12 df-fzo 10037 . . . . . . 7  |- ..^  =  ( y  e.  ZZ , 
z  e.  ZZ  |->  ( y ... ( z  -  1 ) ) )
1311, 12ovmpoga 5947 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( M ... ( N  - 
1 ) )  e. 
~P ZZ )  -> 
( M..^ N )  =  ( M ... ( N  -  1
) ) )
148, 13mpd3an3 1320 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M..^ N )  =  ( M ... ( N  -  1
) ) )
1514eleq2d 2227 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  e.  ( M..^ N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) )
1615expcom 115 . . 3  |-  ( N  e.  ZZ  ->  ( M  e.  ZZ  ->  ( x  e.  ( M..^ N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) ) )
172, 4, 16pm5.21ndd 695 . 2  |-  ( N  e.  ZZ  ->  (
x  e.  ( M..^ N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) )
1817eqrdv 2155 1  |-  ( N  e.  ZZ  ->  ( M..^ N )  =  ( M ... ( N  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   ~Pcpw 3543  (class class class)co 5821   1c1 7728    - cmin 8041   ZZcz 9162   ...cfz 9907  ..^cfzo 10036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7818  ax-resscn 7819  ax-1cn 7820  ax-1re 7821  ax-icn 7822  ax-addcl 7823  ax-addrcl 7824  ax-mulcl 7825  ax-addcom 7827  ax-addass 7829  ax-distr 7831  ax-i2m1 7832  ax-0lt1 7833  ax-0id 7835  ax-rnegex 7836  ax-cnre 7838  ax-pre-ltirr 7839  ax-pre-ltwlin 7840  ax-pre-lttrn 7841  ax-pre-ltadd 7843
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7909  df-mnf 7910  df-xr 7911  df-ltxr 7912  df-le 7913  df-sub 8043  df-neg 8044  df-inn 8829  df-n0 9086  df-z 9163  df-uz 9435  df-fz 9908  df-fzo 10037
This theorem is referenced by:  elfzo  10043  fzodcel  10046  fzon  10060  fzoss1  10065  fzoss2  10066  fzval3  10098  fzo0to2pr  10112  fzo0to3tp  10113  fzo0to42pr  10114  fzoend  10116  fzofzp1b  10122  elfzom1b  10123  peano2fzor  10126  fzoshftral  10132  zmodfzo  10241  zmodidfzo  10247  fzofig  10326  hashfzo  10691  fzosump1  11309  telfsumo  11358  fsumparts  11362  geoserap  11399  geo2sum2  11407  dfphi2  12087
  Copyright terms: Public domain W3C validator