Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzoval | Unicode version |
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzoval | ..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 10039 | . . . 4 ..^ | |
2 | 1 | a1i 9 | . . 3 ..^ |
3 | elfzel1 9922 | . . . 4 | |
4 | 3 | a1i 9 | . . 3 |
5 | peano2zm 9200 | . . . . . . 7 | |
6 | fzf 9911 | . . . . . . . 8 | |
7 | 6 | fovcl 5923 | . . . . . . 7 |
8 | 5, 7 | sylan2 284 | . . . . . 6 |
9 | id 19 | . . . . . . . 8 | |
10 | oveq1 5828 | . . . . . . . 8 | |
11 | 9, 10 | oveqan12d 5840 | . . . . . . 7 |
12 | df-fzo 10037 | . . . . . . 7 ..^ | |
13 | 11, 12 | ovmpoga 5947 | . . . . . 6 ..^ |
14 | 8, 13 | mpd3an3 1320 | . . . . 5 ..^ |
15 | 14 | eleq2d 2227 | . . . 4 ..^ |
16 | 15 | expcom 115 | . . 3 ..^ |
17 | 2, 4, 16 | pm5.21ndd 695 | . 2 ..^ |
18 | 17 | eqrdv 2155 | 1 ..^ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cpw 3543 (class class class)co 5821 c1 7728 cmin 8041 cz 9162 cfz 9907 ..^cfzo 10036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7818 ax-resscn 7819 ax-1cn 7820 ax-1re 7821 ax-icn 7822 ax-addcl 7823 ax-addrcl 7824 ax-mulcl 7825 ax-addcom 7827 ax-addass 7829 ax-distr 7831 ax-i2m1 7832 ax-0lt1 7833 ax-0id 7835 ax-rnegex 7836 ax-cnre 7838 ax-pre-ltirr 7839 ax-pre-ltwlin 7840 ax-pre-lttrn 7841 ax-pre-ltadd 7843 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-pnf 7909 df-mnf 7910 df-xr 7911 df-ltxr 7912 df-le 7913 df-sub 8043 df-neg 8044 df-inn 8829 df-n0 9086 df-z 9163 df-uz 9435 df-fz 9908 df-fzo 10037 |
This theorem is referenced by: elfzo 10043 fzodcel 10046 fzon 10060 fzoss1 10065 fzoss2 10066 fzval3 10098 fzo0to2pr 10112 fzo0to3tp 10113 fzo0to42pr 10114 fzoend 10116 fzofzp1b 10122 elfzom1b 10123 peano2fzor 10126 fzoshftral 10132 zmodfzo 10241 zmodidfzo 10247 fzofig 10326 hashfzo 10691 fzosump1 11309 telfsumo 11358 fsumparts 11362 geoserap 11399 geo2sum2 11407 dfphi2 12087 |
Copyright terms: Public domain | W3C validator |