ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg3 Unicode version

Theorem issubg3 13096
Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubg3.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
issubg3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  ( I `  x
)  e.  S ) ) )
Distinct variable groups:    x, G    x, I    x, S

Proof of Theorem issubg3
Dummy variables  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2188 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
21subg0cl 13086 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
32a1i 9 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
) )
41subm0cl 12895 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
54adantr 276 . . 3  |-  ( ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  (
I `  x )  e.  S )  ->  ( 0g `  G )  e.  S )
65a1i 9 . 2  |-  ( G  e.  Grp  ->  (
( S  e.  (SubMnd `  G )  /\  A. x  e.  S  (
I `  x )  e.  S )  ->  ( 0g `  G )  e.  S ) )
7 elex2 2767 . . . . . . . 8  |-  ( ( 0g `  G )  e.  S  ->  E. w  w  e.  S )
8 id 19 . . . . . . . 8  |-  ( ( 0g `  G )  e.  S  ->  ( 0g `  G )  e.  S )
97, 82thd 175 . . . . . . 7  |-  ( ( 0g `  G )  e.  S  ->  ( E. w  w  e.  S 
<->  ( 0g `  G
)  e.  S ) )
109adantl 277 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  S )  -> 
( E. w  w  e.  S  <->  ( 0g `  G )  e.  S
) )
11 r19.26 2615 . . . . . . 7  |-  ( A. x  e.  S  ( A. y  e.  S  ( x ( +g  `  G ) y )  e.  S  /\  (
I `  x )  e.  S )  <->  ( A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  A. x  e.  S  ( I `  x )  e.  S
) )
1211a1i 9 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  S )  -> 
( A. x  e.  S  ( A. y  e.  S  ( x
( +g  `  G ) y )  e.  S  /\  ( I `  x
)  e.  S )  <-> 
( A. x  e.  S  A. y  e.  S  ( x ( +g  `  G ) y )  e.  S  /\  A. x  e.  S  ( I `  x
)  e.  S ) ) )
1310, 123anbi23d 1325 . . . . 5  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  S )  -> 
( ( S  C_  ( Base `  G )  /\  E. w  w  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  ( I `
 x )  e.  S ) )  <->  ( S  C_  ( Base `  G
)  /\  ( 0g `  G )  e.  S  /\  ( A. x  e.  S  A. y  e.  S  ( x ( +g  `  G ) y )  e.  S  /\  A. x  e.  S  ( I `  x
)  e.  S ) ) ) )
14 anass 401 . . . . . 6  |-  ( ( ( ( S  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  G ) y )  e.  S
)  /\  A. x  e.  S  ( I `  x )  e.  S
)  <->  ( ( S 
C_  ( Base `  G
)  /\  ( 0g `  G )  e.  S
)  /\  ( A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  A. x  e.  S  ( I `  x )  e.  S
) ) )
15 df-3an 981 . . . . . . 7  |-  ( ( S  C_  ( Base `  G )  /\  ( 0g `  G )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  G ) y )  e.  S
)  <->  ( ( S 
C_  ( Base `  G
)  /\  ( 0g `  G )  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x
( +g  `  G ) y )  e.  S
) )
1615anbi1i 458 . . . . . 6  |-  ( ( ( S  C_  ( Base `  G )  /\  ( 0g `  G )  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S )  /\  A. x  e.  S  (
I `  x )  e.  S )  <->  ( (
( S  C_  ( Base `  G )  /\  ( 0g `  G )  e.  S )  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S )  /\  A. x  e.  S  (
I `  x )  e.  S ) )
17 df-3an 981 . . . . . 6  |-  ( ( S  C_  ( Base `  G )  /\  ( 0g `  G )  e.  S  /\  ( A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  A. x  e.  S  ( I `  x )  e.  S
) )  <->  ( ( S  C_  ( Base `  G
)  /\  ( 0g `  G )  e.  S
)  /\  ( A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  A. x  e.  S  ( I `  x )  e.  S
) ) )
1814, 16, 173bitr4ri 213 . . . . 5  |-  ( ( S  C_  ( Base `  G )  /\  ( 0g `  G )  e.  S  /\  ( A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  A. x  e.  S  ( I `  x )  e.  S
) )  <->  ( ( S  C_  ( Base `  G
)  /\  ( 0g `  G )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  G ) y )  e.  S )  /\  A. x  e.  S  ( I `  x )  e.  S ) )
1913, 18bitrdi 196 . . . 4  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  S )  -> 
( ( S  C_  ( Base `  G )  /\  E. w  w  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  ( I `
 x )  e.  S ) )  <->  ( ( S  C_  ( Base `  G
)  /\  ( 0g `  G )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  G ) y )  e.  S )  /\  A. x  e.  S  ( I `  x )  e.  S ) ) )
20 eqid 2188 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
21 eqid 2188 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
22 issubg3.i . . . . . 6  |-  I  =  ( invg `  G )
2320, 21, 22issubg2m 13093 . . . . 5  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  ( Base `  G )  /\  E. w  w  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x ( +g  `  G
) y )  e.  S  /\  ( I `
 x )  e.  S ) ) ) )
2423adantr 276 . . . 4  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  S )  -> 
( S  e.  (SubGrp `  G )  <->  ( S  C_  ( Base `  G
)  /\  E. w  w  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x ( +g  `  G ) y )  e.  S  /\  (
I `  x )  e.  S ) ) ) )
25 grpmnd 12917 . . . . . . 7  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2620, 1, 21issubm 12889 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( S  e.  (SubMnd `  G
)  <->  ( S  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S ) ) )
2725, 26syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  ( S  e.  (SubMnd `  G
)  <->  ( S  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S ) ) )
2827anbi1d 465 . . . . 5  |-  ( G  e.  Grp  ->  (
( S  e.  (SubMnd `  G )  /\  A. x  e.  S  (
I `  x )  e.  S )  <->  ( ( S  C_  ( Base `  G
)  /\  ( 0g `  G )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x ( +g  `  G ) y )  e.  S )  /\  A. x  e.  S  ( I `  x )  e.  S ) ) )
2928adantr 276 . . . 4  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  S )  -> 
( ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  ( I `  x
)  e.  S )  <-> 
( ( S  C_  ( Base `  G )  /\  ( 0g `  G
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x ( +g  `  G
) y )  e.  S )  /\  A. x  e.  S  (
I `  x )  e.  S ) ) )
3019, 24, 293bitr4d 220 . . 3  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  S )  -> 
( S  e.  (SubGrp `  G )  <->  ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  ( I `  x
)  e.  S ) ) )
3130ex 115 . 2  |-  ( G  e.  Grp  ->  (
( 0g `  G
)  e.  S  -> 
( S  e.  (SubGrp `  G )  <->  ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  ( I `  x
)  e.  S ) ) ) )
323, 6, 31pm5.21ndd 706 1  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  e.  (SubMnd `  G )  /\  A. x  e.  S  ( I `  x
)  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363   E.wex 1502    e. wcel 2159   A.wral 2467    C_ wss 3143   ` cfv 5230  (class class class)co 5890   Basecbs 12479   +g cplusg 12554   0gc0g 12726   Mndcmnd 12842  SubMndcsubmnd 12875   Grpcgrp 12910   invgcminusg 12911  SubGrpcsubg 13071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-pre-ltirr 7940  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-pnf 8011  df-mnf 8012  df-ltxr 8014  df-inn 8937  df-2 8995  df-ndx 12482  df-slot 12483  df-base 12485  df-sets 12486  df-iress 12487  df-plusg 12567  df-0g 12728  df-mgm 12797  df-sgrp 12830  df-mnd 12843  df-submnd 12877  df-grp 12913  df-minusg 12914  df-subg 13074
This theorem is referenced by:  subgsubm  13100  0subg  13103  ghmeql  13166
  Copyright terms: Public domain W3C validator