Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1dceq Unicode version

Theorem pw1dceq 16399
Description: The powerset of  1o having decidable equality is equivalent to excluded middle. (Contributed by Jim Kingdon, 12-Feb-2026.)
Assertion
Ref Expression
pw1dceq  |-  (EXMID  <->  A. x  e.  ~P  1o A. y  e.  ~P  1oDECID  x  =  y )
Distinct variable group:    x, y

Proof of Theorem pw1dceq
StepHypRef Expression
1 exmidexmid 4280 . . . 4  |-  (EXMID  -> DECID  x  =  y
)
21ralrimivw 2604 . . 3  |-  (EXMID  ->  A. y  e.  ~P  1oDECID  x  =  y )
32ralrimivw 2604 . 2  |-  (EXMID  ->  A. x  e.  ~P  1o A. y  e.  ~P  1oDECID  x  =  y )
4 1oex 6576 . . . . . 6  |-  1o  e.  _V
54pwid 3664 . . . . 5  |-  1o  e.  ~P 1o
6 eqeq2 2239 . . . . . . 7  |-  ( y  =  1o  ->  (
x  =  y  <->  x  =  1o ) )
76dcbid 843 . . . . . 6  |-  ( y  =  1o  ->  (DECID  x  =  y  <-> DECID  x  =  1o )
)
87rspcv 2903 . . . . 5  |-  ( 1o  e.  ~P 1o  ->  ( A. y  e.  ~P  1oDECID  x  =  y  -> DECID  x  =  1o ) )
95, 8ax-mp 5 . . . 4  |-  ( A. y  e.  ~P  1oDECID  x  =  y  -> DECID  x  =  1o )
109ralimi 2593 . . 3  |-  ( A. x  e.  ~P  1o A. y  e.  ~P  1oDECID  x  =  y  ->  A. x  e.  ~P  1oDECID  x  =  1o )
11 pw1dc1 7084 . . 3  |-  (EXMID  <->  A. x  e.  ~P  1oDECID  x  =  1o )
1210, 11sylibr 134 . 2  |-  ( A. x  e.  ~P  1o A. y  e.  ~P  1oDECID  x  =  y  -> EXMID )
133, 12impbii 126 1  |-  (EXMID  <->  A. x  e.  ~P  1o A. y  e.  ~P  1oDECID  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   ~Pcpw 3649  EXMIDwem 4278   1oc1o 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-exmid 4279  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator