ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexssex Unicode version

Theorem abexssex 6270
Description: Existence of a class abstraction with an existentially quantified expression. Both  x and  y can be free in  ph. (Contributed by NM, 29-Jul-2006.)
Hypotheses
Ref Expression
abrexex2.1  |-  A  e. 
_V
abrexex2.2  |-  { y  |  ph }  e.  _V
Assertion
Ref Expression
abexssex  |-  { y  |  E. x ( x  C_  A  /\  ph ) }  e.  _V
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem abexssex
StepHypRef Expression
1 df-rex 2514 . . . 4  |-  ( E. x  e.  ~P  A ph 
<->  E. x ( x  e.  ~P A  /\  ph ) )
2 velpw 3656 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
32anbi1i 458 . . . . 5  |-  ( ( x  e.  ~P A  /\  ph )  <->  ( x  C_  A  /\  ph )
)
43exbii 1651 . . . 4  |-  ( E. x ( x  e. 
~P A  /\  ph ) 
<->  E. x ( x 
C_  A  /\  ph ) )
51, 4bitri 184 . . 3  |-  ( E. x  e.  ~P  A ph 
<->  E. x ( x 
C_  A  /\  ph ) )
65abbii 2345 . 2  |-  { y  |  E. x  e. 
~P  A ph }  =  { y  |  E. x ( x  C_  A  /\  ph ) }
7 abrexex2.1 . . . 4  |-  A  e. 
_V
87pwex 4267 . . 3  |-  ~P A  e.  _V
9 abrexex2.2 . . 3  |-  { y  |  ph }  e.  _V
108, 9abrexex2 6269 . 2  |-  { y  |  E. x  e. 
~P  A ph }  e.  _V
116, 10eqeltrri 2303 1  |-  { y  |  E. x ( x  C_  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1538    e. wcel 2200   {cab 2215   E.wrex 2509   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator