ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abexssex Unicode version

Theorem abexssex 6070
Description: Existence of a class abstraction with an existentially quantified expression. Both  x and  y can be free in  ph. (Contributed by NM, 29-Jul-2006.)
Hypotheses
Ref Expression
abrexex2.1  |-  A  e. 
_V
abrexex2.2  |-  { y  |  ph }  e.  _V
Assertion
Ref Expression
abexssex  |-  { y  |  E. x ( x  C_  A  /\  ph ) }  e.  _V
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem abexssex
StepHypRef Expression
1 df-rex 2441 . . . 4  |-  ( E. x  e.  ~P  A ph 
<->  E. x ( x  e.  ~P A  /\  ph ) )
2 velpw 3550 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
32anbi1i 454 . . . . 5  |-  ( ( x  e.  ~P A  /\  ph )  <->  ( x  C_  A  /\  ph )
)
43exbii 1585 . . . 4  |-  ( E. x ( x  e. 
~P A  /\  ph ) 
<->  E. x ( x 
C_  A  /\  ph ) )
51, 4bitri 183 . . 3  |-  ( E. x  e.  ~P  A ph 
<->  E. x ( x 
C_  A  /\  ph ) )
65abbii 2273 . 2  |-  { y  |  E. x  e. 
~P  A ph }  =  { y  |  E. x ( x  C_  A  /\  ph ) }
7 abrexex2.1 . . . 4  |-  A  e. 
_V
87pwex 4144 . . 3  |-  ~P A  e.  _V
9 abrexex2.2 . . 3  |-  { y  |  ph }  e.  _V
108, 9abrexex2 6069 . 2  |-  { y  |  E. x  e. 
~P  A ph }  e.  _V
116, 10eqeltrri 2231 1  |-  { y  |  E. x ( x  C_  A  /\  ph ) }  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1472    e. wcel 2128   {cab 2143   E.wrex 2436   _Vcvv 2712    C_ wss 3102   ~Pcpw 3543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator