ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnex Unicode version

Theorem axcnex 8042
Description: The complex numbers form a set. Use cnex 8119 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axcnex  |-  CC  e.  _V

Proof of Theorem axcnex
StepHypRef Expression
1 df-c 8001 . 2  |-  CC  =  ( R.  X.  R. )
2 df-nr 7910 . . . 4  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3 npex 7656 . . . . . . 7  |-  P.  e.  _V
43, 3xpex 4833 . . . . . 6  |-  ( P. 
X.  P. )  e.  _V
54pwex 4266 . . . . 5  |-  ~P ( P.  X.  P. )  e. 
_V
6 enrer 7918 . . . . . . . 8  |-  ~R  Er  ( P.  X.  P. )
76a1i 9 . . . . . . 7  |-  ( T. 
->  ~R  Er  ( P. 
X.  P. ) )
87qsss 6739 . . . . . 6  |-  ( T. 
->  ( ( P.  X.  P. ) /.  ~R  )  C_ 
~P ( P.  X.  P. ) )
98mptru 1404 . . . . 5  |-  ( ( P.  X.  P. ) /.  ~R  )  C_  ~P ( P.  X.  P. )
105, 9ssexi 4221 . . . 4  |-  ( ( P.  X.  P. ) /.  ~R  )  e.  _V
112, 10eqeltri 2302 . . 3  |-  R.  e.  _V
1211, 11xpex 4833 . 2  |-  ( R. 
X.  R. )  e.  _V
131, 12eqeltri 2302 1  |-  CC  e.  _V
Colors of variables: wff set class
Syntax hints:   T. wtru 1396    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649    X. cxp 4716    Er wer 6675   /.cqs 6677   P.cnp 7474    ~R cer 7479   R.cnr 7480   CCcc 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-iplp 7651  df-enr 7909  df-nr 7910  df-c 8001
This theorem is referenced by:  peano5nnnn  8075
  Copyright terms: Public domain W3C validator