ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcnex Unicode version

Theorem axcnex 7821
Description: The complex numbers form a set. Use cnex 7898 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
axcnex  |-  CC  e.  _V

Proof of Theorem axcnex
StepHypRef Expression
1 df-c 7780 . 2  |-  CC  =  ( R.  X.  R. )
2 df-nr 7689 . . . 4  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
3 npex 7435 . . . . . . 7  |-  P.  e.  _V
43, 3xpex 4726 . . . . . 6  |-  ( P. 
X.  P. )  e.  _V
54pwex 4169 . . . . 5  |-  ~P ( P.  X.  P. )  e. 
_V
6 enrer 7697 . . . . . . . 8  |-  ~R  Er  ( P.  X.  P. )
76a1i 9 . . . . . . 7  |-  ( T. 
->  ~R  Er  ( P. 
X.  P. ) )
87qsss 6572 . . . . . 6  |-  ( T. 
->  ( ( P.  X.  P. ) /.  ~R  )  C_ 
~P ( P.  X.  P. ) )
98mptru 1357 . . . . 5  |-  ( ( P.  X.  P. ) /.  ~R  )  C_  ~P ( P.  X.  P. )
105, 9ssexi 4127 . . . 4  |-  ( ( P.  X.  P. ) /.  ~R  )  e.  _V
112, 10eqeltri 2243 . . 3  |-  R.  e.  _V
1211, 11xpex 4726 . 2  |-  ( R. 
X.  R. )  e.  _V
131, 12eqeltri 2243 1  |-  CC  e.  _V
Colors of variables: wff set class
Syntax hints:   T. wtru 1349    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566    X. cxp 4609    Er wer 6510   /.cqs 6512   P.cnp 7253    ~R cer 7258   R.cnr 7259   CCcc 7772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-enr 7688  df-nr 7689  df-c 7780
This theorem is referenced by:  peano5nnnn  7854
  Copyright terms: Public domain W3C validator