ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxex Unicode version

Theorem ixxex 9974
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxex  |-  O  e. 
_V
Distinct variable groups:    x, y, z, R    x, S, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem ixxex
StepHypRef Expression
1 xrex 9931 . . . 4  |-  RR*  e.  _V
21, 1xpex 4778 . . 3  |-  ( RR*  X. 
RR* )  e.  _V
31pwex 4216 . . 3  |-  ~P RR*  e.  _V
42, 3xpex 4778 . 2  |-  ( (
RR*  X.  RR* )  X. 
~P RR* )  e.  _V
5 ixx.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
65ixxf 9973 . . 3  |-  O :
( RR*  X.  RR* ) --> ~P RR*
7 fssxp 5425 . . 3  |-  ( O : ( RR*  X.  RR* )
--> ~P RR*  ->  O  C_  ( ( RR*  X.  RR* )  X.  ~P RR* )
)
86, 7ax-mp 5 . 2  |-  O  C_  ( ( RR*  X.  RR* )  X.  ~P RR* )
94, 8ssexi 4171 1  |-  O  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   class class class wbr 4033    X. cxp 4661   -->wf 5254    e. cmpo 5924   RR*cxr 8060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065
This theorem is referenced by:  iooex  9982
  Copyright terms: Public domain W3C validator