ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxex Unicode version

Theorem ixxex 9575
Description: The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
ixx.1  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
Assertion
Ref Expression
ixxex  |-  O  e. 
_V
Distinct variable groups:    x, y, z, R    x, S, y, z
Allowed substitution hints:    O( x, y, z)

Proof of Theorem ixxex
StepHypRef Expression
1 xrex 9532 . . . 4  |-  RR*  e.  _V
21, 1xpex 4614 . . 3  |-  ( RR*  X. 
RR* )  e.  _V
31pwex 4067 . . 3  |-  ~P RR*  e.  _V
42, 3xpex 4614 . 2  |-  ( (
RR*  X.  RR* )  X. 
~P RR* )  e.  _V
5 ixx.1 . . . 4  |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x R z  /\  z S y ) } )
65ixxf 9574 . . 3  |-  O :
( RR*  X.  RR* ) --> ~P RR*
7 fssxp 5248 . . 3  |-  ( O : ( RR*  X.  RR* )
--> ~P RR*  ->  O  C_  ( ( RR*  X.  RR* )  X.  ~P RR* )
)
86, 7ax-mp 7 . 2  |-  O  C_  ( ( RR*  X.  RR* )  X.  ~P RR* )
94, 8ssexi 4026 1  |-  O  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314    e. wcel 1463   {crab 2394   _Vcvv 2657    C_ wss 3037   ~Pcpw 3476   class class class wbr 3895    X. cxp 4497   -->wf 5077    e. cmpo 5730   RR*cxr 7723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-cnex 7636  ax-resscn 7637
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728
This theorem is referenced by:  iooex  9583
  Copyright terms: Public domain W3C validator