Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sgrp1 | Unicode version |
Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.) |
Ref | Expression |
---|---|
sgrp1.m |
Ref | Expression |
---|---|
sgrp1 | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp1.m | . . 3 | |
2 | 1 | mgm1 12601 | . 2 Mgm |
3 | df-ov 5845 | . . . . . . 7 | |
4 | opexg 4206 | . . . . . . . . 9 | |
5 | 4 | anidms 395 | . . . . . . . 8 |
6 | fvsng 5681 | . . . . . . . 8 | |
7 | 5, 6 | mpancom 419 | . . . . . . 7 |
8 | 3, 7 | eqtrid 2210 | . . . . . 6 |
9 | 8 | oveq1d 5857 | . . . . 5 |
10 | 8 | oveq2d 5858 | . . . . 5 |
11 | 9, 10 | eqtr4d 2201 | . . . 4 |
12 | oveq1 5849 | . . . . . . . . 9 | |
13 | 12 | oveq1d 5857 | . . . . . . . 8 |
14 | oveq1 5849 | . . . . . . . 8 | |
15 | 13, 14 | eqeq12d 2180 | . . . . . . 7 |
16 | 15 | 2ralbidv 2490 | . . . . . 6 |
17 | 16 | ralsng 3616 | . . . . 5 |
18 | oveq2 5850 | . . . . . . . . 9 | |
19 | 18 | oveq1d 5857 | . . . . . . . 8 |
20 | oveq1 5849 | . . . . . . . . 9 | |
21 | 20 | oveq2d 5858 | . . . . . . . 8 |
22 | 19, 21 | eqeq12d 2180 | . . . . . . 7 |
23 | 22 | ralbidv 2466 | . . . . . 6 |
24 | 23 | ralsng 3616 | . . . . 5 |
25 | oveq2 5850 | . . . . . . 7 | |
26 | oveq2 5850 | . . . . . . . 8 | |
27 | 26 | oveq2d 5858 | . . . . . . 7 |
28 | 25, 27 | eqeq12d 2180 | . . . . . 6 |
29 | 28 | ralsng 3616 | . . . . 5 |
30 | 17, 24, 29 | 3bitrd 213 | . . . 4 |
31 | 11, 30 | mpbird 166 | . . 3 |
32 | snexg 4163 | . . . . 5 | |
33 | elex 2737 | . . . . . . 7 | |
34 | opexg 4206 | . . . . . . 7 | |
35 | 5, 33, 34 | syl2anc 409 | . . . . . 6 |
36 | snexg 4163 | . . . . . 6 | |
37 | 35, 36 | syl 14 | . . . . 5 |
38 | 1 | grpbaseg 12503 | . . . . 5 |
39 | 32, 37, 38 | syl2anc 409 | . . . 4 |
40 | 1 | grpplusgg 12504 | . . . . . . . . 9 |
41 | 32, 37, 40 | syl2anc 409 | . . . . . . . 8 |
42 | 41 | oveqd 5859 | . . . . . . . 8 |
43 | eqidd 2166 | . . . . . . . 8 | |
44 | 41, 42, 43 | oveq123d 5863 | . . . . . . 7 |
45 | eqidd 2166 | . . . . . . . 8 | |
46 | 41 | oveqd 5859 | . . . . . . . 8 |
47 | 41, 45, 46 | oveq123d 5863 | . . . . . . 7 |
48 | 44, 47 | eqeq12d 2180 | . . . . . 6 |
49 | 39, 48 | raleqbidv 2673 | . . . . 5 |
50 | 39, 49 | raleqbidv 2673 | . . . 4 |
51 | 39, 50 | raleqbidv 2673 | . . 3 |
52 | 31, 51 | mpbid 146 | . 2 |
53 | eqid 2165 | . . 3 | |
54 | eqid 2165 | . . 3 | |
55 | 53, 54 | issgrp 12621 | . 2 Smgrp Mgm |
56 | 2, 52, 55 | sylanbrc 414 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wral 2444 cvv 2726 csn 3576 cpr 3577 cop 3579 cfv 5188 (class class class)co 5842 cnx 12391 cbs 12394 cplusg 12457 Mgmcmgm 12585 Smgrpcsgrp 12619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-mgm 12587 df-sgrp 12620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |