| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgrp1 | Unicode version | ||
| Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.) |
| Ref | Expression |
|---|---|
| sgrp1.m |
|
| Ref | Expression |
|---|---|
| sgrp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgrp1.m |
. . 3
| |
| 2 | 1 | mgm1 13403 |
. 2
|
| 3 | df-ov 6004 |
. . . . . . 7
| |
| 4 | opexg 4314 |
. . . . . . . . 9
| |
| 5 | 4 | anidms 397 |
. . . . . . . 8
|
| 6 | fvsng 5835 |
. . . . . . . 8
| |
| 7 | 5, 6 | mpancom 422 |
. . . . . . 7
|
| 8 | 3, 7 | eqtrid 2274 |
. . . . . 6
|
| 9 | 8 | oveq1d 6016 |
. . . . 5
|
| 10 | 8 | oveq2d 6017 |
. . . . 5
|
| 11 | 9, 10 | eqtr4d 2265 |
. . . 4
|
| 12 | oveq1 6008 |
. . . . . . . . 9
| |
| 13 | 12 | oveq1d 6016 |
. . . . . . . 8
|
| 14 | oveq1 6008 |
. . . . . . . 8
| |
| 15 | 13, 14 | eqeq12d 2244 |
. . . . . . 7
|
| 16 | 15 | 2ralbidv 2554 |
. . . . . 6
|
| 17 | 16 | ralsng 3706 |
. . . . 5
|
| 18 | oveq2 6009 |
. . . . . . . . 9
| |
| 19 | 18 | oveq1d 6016 |
. . . . . . . 8
|
| 20 | oveq1 6008 |
. . . . . . . . 9
| |
| 21 | 20 | oveq2d 6017 |
. . . . . . . 8
|
| 22 | 19, 21 | eqeq12d 2244 |
. . . . . . 7
|
| 23 | 22 | ralbidv 2530 |
. . . . . 6
|
| 24 | 23 | ralsng 3706 |
. . . . 5
|
| 25 | oveq2 6009 |
. . . . . . 7
| |
| 26 | oveq2 6009 |
. . . . . . . 8
| |
| 27 | 26 | oveq2d 6017 |
. . . . . . 7
|
| 28 | 25, 27 | eqeq12d 2244 |
. . . . . 6
|
| 29 | 28 | ralsng 3706 |
. . . . 5
|
| 30 | 17, 24, 29 | 3bitrd 214 |
. . . 4
|
| 31 | 11, 30 | mpbird 167 |
. . 3
|
| 32 | snexg 4268 |
. . . . 5
| |
| 33 | elex 2811 |
. . . . . . 7
| |
| 34 | opexg 4314 |
. . . . . . 7
| |
| 35 | 5, 33, 34 | syl2anc 411 |
. . . . . 6
|
| 36 | snexg 4268 |
. . . . . 6
| |
| 37 | 35, 36 | syl 14 |
. . . . 5
|
| 38 | 1 | grpbaseg 13160 |
. . . . 5
|
| 39 | 32, 37, 38 | syl2anc 411 |
. . . 4
|
| 40 | 1 | grpplusgg 13161 |
. . . . . . . . 9
|
| 41 | 32, 37, 40 | syl2anc 411 |
. . . . . . . 8
|
| 42 | 41 | oveqd 6018 |
. . . . . . . 8
|
| 43 | eqidd 2230 |
. . . . . . . 8
| |
| 44 | 41, 42, 43 | oveq123d 6022 |
. . . . . . 7
|
| 45 | eqidd 2230 |
. . . . . . . 8
| |
| 46 | 41 | oveqd 6018 |
. . . . . . . 8
|
| 47 | 41, 45, 46 | oveq123d 6022 |
. . . . . . 7
|
| 48 | 44, 47 | eqeq12d 2244 |
. . . . . 6
|
| 49 | 39, 48 | raleqbidv 2744 |
. . . . 5
|
| 50 | 39, 49 | raleqbidv 2744 |
. . . 4
|
| 51 | 39, 50 | raleqbidv 2744 |
. . 3
|
| 52 | 31, 51 | mpbid 147 |
. 2
|
| 53 | eqid 2229 |
. . 3
| |
| 54 | eqid 2229 |
. . 3
| |
| 55 | 53, 54 | issgrp 13436 |
. 2
|
| 56 | 2, 52, 55 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-mgm 13389 df-sgrp 13435 |
| This theorem is referenced by: mnd1 13488 |
| Copyright terms: Public domain | W3C validator |