| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sgrp1 | Unicode version | ||
| Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.) | 
| Ref | Expression | 
|---|---|
| sgrp1.m | 
 | 
| Ref | Expression | 
|---|---|
| sgrp1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sgrp1.m | 
. . 3
 | |
| 2 | 1 | mgm1 13013 | 
. 2
 | 
| 3 | df-ov 5925 | 
. . . . . . 7
 | |
| 4 | opexg 4261 | 
. . . . . . . . 9
 | |
| 5 | 4 | anidms 397 | 
. . . . . . . 8
 | 
| 6 | fvsng 5758 | 
. . . . . . . 8
 | |
| 7 | 5, 6 | mpancom 422 | 
. . . . . . 7
 | 
| 8 | 3, 7 | eqtrid 2241 | 
. . . . . 6
 | 
| 9 | 8 | oveq1d 5937 | 
. . . . 5
 | 
| 10 | 8 | oveq2d 5938 | 
. . . . 5
 | 
| 11 | 9, 10 | eqtr4d 2232 | 
. . . 4
 | 
| 12 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 13 | 12 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 14 | oveq1 5929 | 
. . . . . . . 8
 | |
| 15 | 13, 14 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 16 | 15 | 2ralbidv 2521 | 
. . . . . 6
 | 
| 17 | 16 | ralsng 3662 | 
. . . . 5
 | 
| 18 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 19 | 18 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 20 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 21 | 20 | oveq2d 5938 | 
. . . . . . . 8
 | 
| 22 | 19, 21 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 23 | 22 | ralbidv 2497 | 
. . . . . 6
 | 
| 24 | 23 | ralsng 3662 | 
. . . . 5
 | 
| 25 | oveq2 5930 | 
. . . . . . 7
 | |
| 26 | oveq2 5930 | 
. . . . . . . 8
 | |
| 27 | 26 | oveq2d 5938 | 
. . . . . . 7
 | 
| 28 | 25, 27 | eqeq12d 2211 | 
. . . . . 6
 | 
| 29 | 28 | ralsng 3662 | 
. . . . 5
 | 
| 30 | 17, 24, 29 | 3bitrd 214 | 
. . . 4
 | 
| 31 | 11, 30 | mpbird 167 | 
. . 3
 | 
| 32 | snexg 4217 | 
. . . . 5
 | |
| 33 | elex 2774 | 
. . . . . . 7
 | |
| 34 | opexg 4261 | 
. . . . . . 7
 | |
| 35 | 5, 33, 34 | syl2anc 411 | 
. . . . . 6
 | 
| 36 | snexg 4217 | 
. . . . . 6
 | |
| 37 | 35, 36 | syl 14 | 
. . . . 5
 | 
| 38 | 1 | grpbaseg 12804 | 
. . . . 5
 | 
| 39 | 32, 37, 38 | syl2anc 411 | 
. . . 4
 | 
| 40 | 1 | grpplusgg 12805 | 
. . . . . . . . 9
 | 
| 41 | 32, 37, 40 | syl2anc 411 | 
. . . . . . . 8
 | 
| 42 | 41 | oveqd 5939 | 
. . . . . . . 8
 | 
| 43 | eqidd 2197 | 
. . . . . . . 8
 | |
| 44 | 41, 42, 43 | oveq123d 5943 | 
. . . . . . 7
 | 
| 45 | eqidd 2197 | 
. . . . . . . 8
 | |
| 46 | 41 | oveqd 5939 | 
. . . . . . . 8
 | 
| 47 | 41, 45, 46 | oveq123d 5943 | 
. . . . . . 7
 | 
| 48 | 44, 47 | eqeq12d 2211 | 
. . . . . 6
 | 
| 49 | 39, 48 | raleqbidv 2709 | 
. . . . 5
 | 
| 50 | 39, 49 | raleqbidv 2709 | 
. . . 4
 | 
| 51 | 39, 50 | raleqbidv 2709 | 
. . 3
 | 
| 52 | 31, 51 | mpbid 147 | 
. 2
 | 
| 53 | eqid 2196 | 
. . 3
 | |
| 54 | eqid 2196 | 
. . 3
 | |
| 55 | 53, 54 | issgrp 13046 | 
. 2
 | 
| 56 | 2, 52, 55 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mgm 12999 df-sgrp 13045 | 
| This theorem is referenced by: mnd1 13087 | 
| Copyright terms: Public domain | W3C validator |