Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sgrp1 | Unicode version |
Description: The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.) |
Ref | Expression |
---|---|
sgrp1.m |
Ref | Expression |
---|---|
sgrp1 | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrp1.m | . . 3 | |
2 | 1 | mgm1 12624 | . 2 Mgm |
3 | df-ov 5856 | . . . . . . 7 | |
4 | opexg 4213 | . . . . . . . . 9 | |
5 | 4 | anidms 395 | . . . . . . . 8 |
6 | fvsng 5692 | . . . . . . . 8 | |
7 | 5, 6 | mpancom 420 | . . . . . . 7 |
8 | 3, 7 | eqtrid 2215 | . . . . . 6 |
9 | 8 | oveq1d 5868 | . . . . 5 |
10 | 8 | oveq2d 5869 | . . . . 5 |
11 | 9, 10 | eqtr4d 2206 | . . . 4 |
12 | oveq1 5860 | . . . . . . . . 9 | |
13 | 12 | oveq1d 5868 | . . . . . . . 8 |
14 | oveq1 5860 | . . . . . . . 8 | |
15 | 13, 14 | eqeq12d 2185 | . . . . . . 7 |
16 | 15 | 2ralbidv 2494 | . . . . . 6 |
17 | 16 | ralsng 3623 | . . . . 5 |
18 | oveq2 5861 | . . . . . . . . 9 | |
19 | 18 | oveq1d 5868 | . . . . . . . 8 |
20 | oveq1 5860 | . . . . . . . . 9 | |
21 | 20 | oveq2d 5869 | . . . . . . . 8 |
22 | 19, 21 | eqeq12d 2185 | . . . . . . 7 |
23 | 22 | ralbidv 2470 | . . . . . 6 |
24 | 23 | ralsng 3623 | . . . . 5 |
25 | oveq2 5861 | . . . . . . 7 | |
26 | oveq2 5861 | . . . . . . . 8 | |
27 | 26 | oveq2d 5869 | . . . . . . 7 |
28 | 25, 27 | eqeq12d 2185 | . . . . . 6 |
29 | 28 | ralsng 3623 | . . . . 5 |
30 | 17, 24, 29 | 3bitrd 213 | . . . 4 |
31 | 11, 30 | mpbird 166 | . . 3 |
32 | snexg 4170 | . . . . 5 | |
33 | elex 2741 | . . . . . . 7 | |
34 | opexg 4213 | . . . . . . 7 | |
35 | 5, 33, 34 | syl2anc 409 | . . . . . 6 |
36 | snexg 4170 | . . . . . 6 | |
37 | 35, 36 | syl 14 | . . . . 5 |
38 | 1 | grpbaseg 12526 | . . . . 5 |
39 | 32, 37, 38 | syl2anc 409 | . . . 4 |
40 | 1 | grpplusgg 12527 | . . . . . . . . 9 |
41 | 32, 37, 40 | syl2anc 409 | . . . . . . . 8 |
42 | 41 | oveqd 5870 | . . . . . . . 8 |
43 | eqidd 2171 | . . . . . . . 8 | |
44 | 41, 42, 43 | oveq123d 5874 | . . . . . . 7 |
45 | eqidd 2171 | . . . . . . . 8 | |
46 | 41 | oveqd 5870 | . . . . . . . 8 |
47 | 41, 45, 46 | oveq123d 5874 | . . . . . . 7 |
48 | 44, 47 | eqeq12d 2185 | . . . . . 6 |
49 | 39, 48 | raleqbidv 2677 | . . . . 5 |
50 | 39, 49 | raleqbidv 2677 | . . . 4 |
51 | 39, 50 | raleqbidv 2677 | . . 3 |
52 | 31, 51 | mpbid 146 | . 2 |
53 | eqid 2170 | . . 3 | |
54 | eqid 2170 | . . 3 | |
55 | 53, 54 | issgrp 12644 | . 2 Smgrp Mgm |
56 | 2, 52, 55 | sylanbrc 415 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wral 2448 cvv 2730 csn 3583 cpr 3584 cop 3586 cfv 5198 (class class class)co 5853 cnx 12413 cbs 12416 cplusg 12480 Mgmcmgm 12608 Smgrpcsgrp 12642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mgm 12610 df-sgrp 12643 |
This theorem is referenced by: mnd1 12679 |
Copyright terms: Public domain | W3C validator |