| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgm1 | Unicode version | ||
| Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgm1.m |
|
| Ref | Expression |
|---|---|
| mgm1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5970 |
. . . . . 6
| |
| 2 | opexg 4290 |
. . . . . . . 8
| |
| 3 | 2 | anidms 397 |
. . . . . . 7
|
| 4 | fvsng 5803 |
. . . . . . 7
| |
| 5 | 3, 4 | mpancom 422 |
. . . . . 6
|
| 6 | 1, 5 | eqtrid 2252 |
. . . . 5
|
| 7 | snidg 3672 |
. . . . 5
| |
| 8 | 6, 7 | eqeltrd 2284 |
. . . 4
|
| 9 | oveq1 5974 |
. . . . . . . 8
| |
| 10 | 9 | eleq1d 2276 |
. . . . . . 7
|
| 11 | 10 | ralbidv 2508 |
. . . . . 6
|
| 12 | 11 | ralsng 3683 |
. . . . 5
|
| 13 | oveq2 5975 |
. . . . . . 7
| |
| 14 | 13 | eleq1d 2276 |
. . . . . 6
|
| 15 | 14 | ralsng 3683 |
. . . . 5
|
| 16 | 12, 15 | bitrd 188 |
. . . 4
|
| 17 | 8, 16 | mpbird 167 |
. . 3
|
| 18 | snexg 4244 |
. . . . 5
| |
| 19 | opexg 4290 |
. . . . . . 7
| |
| 20 | 3, 19 | mpancom 422 |
. . . . . 6
|
| 21 | snexg 4244 |
. . . . . 6
| |
| 22 | 20, 21 | syl 14 |
. . . . 5
|
| 23 | mgm1.m |
. . . . . 6
| |
| 24 | 23 | grpbaseg 13074 |
. . . . 5
|
| 25 | 18, 22, 24 | syl2anc 411 |
. . . 4
|
| 26 | 23 | grpplusgg 13075 |
. . . . . . . 8
|
| 27 | 18, 22, 26 | syl2anc 411 |
. . . . . . 7
|
| 28 | 27 | oveqd 5984 |
. . . . . 6
|
| 29 | 28, 25 | eleq12d 2278 |
. . . . 5
|
| 30 | 25, 29 | raleqbidv 2721 |
. . . 4
|
| 31 | 25, 30 | raleqbidv 2721 |
. . 3
|
| 32 | 17, 31 | mpbid 147 |
. 2
|
| 33 | 7, 25 | eleqtrd 2286 |
. . 3
|
| 34 | eqid 2207 |
. . . 4
| |
| 35 | eqid 2207 |
. . . 4
| |
| 36 | 34, 35 | ismgmn0 13305 |
. . 3
|
| 37 | 33, 36 | syl 14 |
. 2
|
| 38 | 32, 37 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mgm 13303 |
| This theorem is referenced by: sgrp1 13358 |
| Copyright terms: Public domain | W3C validator |