Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgm1 | Unicode version |
Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.) |
Ref | Expression |
---|---|
mgm1.m |
Ref | Expression |
---|---|
mgm1 | Mgm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5856 | . . . . . 6 | |
2 | opexg 4213 | . . . . . . . 8 | |
3 | 2 | anidms 395 | . . . . . . 7 |
4 | fvsng 5692 | . . . . . . 7 | |
5 | 3, 4 | mpancom 420 | . . . . . 6 |
6 | 1, 5 | eqtrid 2215 | . . . . 5 |
7 | snidg 3612 | . . . . 5 | |
8 | 6, 7 | eqeltrd 2247 | . . . 4 |
9 | oveq1 5860 | . . . . . . . 8 | |
10 | 9 | eleq1d 2239 | . . . . . . 7 |
11 | 10 | ralbidv 2470 | . . . . . 6 |
12 | 11 | ralsng 3623 | . . . . 5 |
13 | oveq2 5861 | . . . . . . 7 | |
14 | 13 | eleq1d 2239 | . . . . . 6 |
15 | 14 | ralsng 3623 | . . . . 5 |
16 | 12, 15 | bitrd 187 | . . . 4 |
17 | 8, 16 | mpbird 166 | . . 3 |
18 | snexg 4170 | . . . . 5 | |
19 | opexg 4213 | . . . . . . 7 | |
20 | 3, 19 | mpancom 420 | . . . . . 6 |
21 | snexg 4170 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | mgm1.m | . . . . . 6 | |
24 | 23 | grpbaseg 12526 | . . . . 5 |
25 | 18, 22, 24 | syl2anc 409 | . . . 4 |
26 | 23 | grpplusgg 12527 | . . . . . . . 8 |
27 | 18, 22, 26 | syl2anc 409 | . . . . . . 7 |
28 | 27 | oveqd 5870 | . . . . . 6 |
29 | 28, 25 | eleq12d 2241 | . . . . 5 |
30 | 25, 29 | raleqbidv 2677 | . . . 4 |
31 | 25, 30 | raleqbidv 2677 | . . 3 |
32 | 17, 31 | mpbid 146 | . 2 |
33 | 7, 25 | eleqtrd 2249 | . . 3 |
34 | eqid 2170 | . . . 4 | |
35 | eqid 2170 | . . . 4 | |
36 | 34, 35 | ismgmn0 12612 | . . 3 Mgm |
37 | 33, 36 | syl 14 | . 2 Mgm |
38 | 32, 37 | mpbird 166 | 1 Mgm |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 wral 2448 cvv 2730 csn 3583 cpr 3584 cop 3586 cfv 5198 (class class class)co 5853 cnx 12413 cbs 12416 cplusg 12480 Mgmcmgm 12608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-mgm 12610 |
This theorem is referenced by: sgrp1 12651 |
Copyright terms: Public domain | W3C validator |