Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgm1 | Unicode version |
Description: The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.) |
Ref | Expression |
---|---|
mgm1.m |
Ref | Expression |
---|---|
mgm1 | Mgm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5845 | . . . . . 6 | |
2 | opexg 4206 | . . . . . . . 8 | |
3 | 2 | anidms 395 | . . . . . . 7 |
4 | fvsng 5681 | . . . . . . 7 | |
5 | 3, 4 | mpancom 419 | . . . . . 6 |
6 | 1, 5 | eqtrid 2210 | . . . . 5 |
7 | snidg 3605 | . . . . 5 | |
8 | 6, 7 | eqeltrd 2243 | . . . 4 |
9 | oveq1 5849 | . . . . . . . 8 | |
10 | 9 | eleq1d 2235 | . . . . . . 7 |
11 | 10 | ralbidv 2466 | . . . . . 6 |
12 | 11 | ralsng 3616 | . . . . 5 |
13 | oveq2 5850 | . . . . . . 7 | |
14 | 13 | eleq1d 2235 | . . . . . 6 |
15 | 14 | ralsng 3616 | . . . . 5 |
16 | 12, 15 | bitrd 187 | . . . 4 |
17 | 8, 16 | mpbird 166 | . . 3 |
18 | snexg 4163 | . . . . 5 | |
19 | opexg 4206 | . . . . . . 7 | |
20 | 3, 19 | mpancom 419 | . . . . . 6 |
21 | snexg 4163 | . . . . . 6 | |
22 | 20, 21 | syl 14 | . . . . 5 |
23 | mgm1.m | . . . . . 6 | |
24 | 23 | grpbaseg 12503 | . . . . 5 |
25 | 18, 22, 24 | syl2anc 409 | . . . 4 |
26 | 23 | grpplusgg 12504 | . . . . . . . 8 |
27 | 18, 22, 26 | syl2anc 409 | . . . . . . 7 |
28 | 27 | oveqd 5859 | . . . . . 6 |
29 | 28, 25 | eleq12d 2237 | . . . . 5 |
30 | 25, 29 | raleqbidv 2673 | . . . 4 |
31 | 25, 30 | raleqbidv 2673 | . . 3 |
32 | 17, 31 | mpbid 146 | . 2 |
33 | 7, 25 | eleqtrd 2245 | . . 3 |
34 | eqid 2165 | . . . 4 | |
35 | eqid 2165 | . . . 4 | |
36 | 34, 35 | ismgmn0 12589 | . . 3 Mgm |
37 | 33, 36 | syl 14 | . 2 Mgm |
38 | 32, 37 | mpbird 166 | 1 Mgm |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 wral 2444 cvv 2726 csn 3576 cpr 3577 cop 3579 cfv 5188 (class class class)co 5842 cnx 12391 cbs 12394 cplusg 12457 Mgmcmgm 12585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-mgm 12587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |