ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgexgg Unicode version

Theorem rdgexgg 6378
Description: The recursive definition generator produces a set on a set input. (Contributed by Jim Kingdon, 4-Jul-2019.)
Hypothesis
Ref Expression
rdgexgg.1  |-  F  Fn  _V
Assertion
Ref Expression
rdgexgg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( rec ( F ,  A ) `  B )  e.  _V )

Proof of Theorem rdgexgg
StepHypRef Expression
1 rdgexgg.1 . 2  |-  F  Fn  _V
2 rdgexggg 6377 . 2  |-  ( ( F  Fn  _V  /\  A  e.  V  /\  B  e.  W )  ->  ( rec ( F ,  A ) `  B )  e.  _V )
31, 2mp3an1 1324 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( rec ( F ,  A ) `  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2148   _Vcvv 2737    Fn wfn 5211   ` cfv 5216   reccrdg 6369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-recs 6305  df-irdg 6370
This theorem is referenced by:  rdgexg  6389  oav  6454
  Copyright terms: Public domain W3C validator