ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgexg Unicode version

Theorem rdgexg 6533
Description: The recursive definition generator produces a set on a set input. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
rdg0.1  |-  A  e. 
_V
rdg0.2  |-  F  Fn  _V
Assertion
Ref Expression
rdgexg  |-  ( B  e.  V  ->  ( rec ( F ,  A
) `  B )  e.  _V )

Proof of Theorem rdgexg
StepHypRef Expression
1 rdg0.1 . 2  |-  A  e. 
_V
2 rdg0.2 . . 3  |-  F  Fn  _V
32rdgexgg 6522 . 2  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( rec ( F ,  A ) `  B )  e.  _V )
41, 3mpan 424 1  |-  ( B  e.  V  ->  ( rec ( F ,  A
) `  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   _Vcvv 2799    Fn wfn 5312   ` cfv 5317   reccrdg 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449  df-irdg 6514
This theorem is referenced by:  fnoa  6591  oaexg  6592  fnom  6594  omexg  6595  fnoei  6596  oeiexg  6597
  Copyright terms: Public domain W3C validator