ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexgALT Unicode version

Theorem resfunexgALT 6076
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5706 but requires ax-pow 4153 and ax-un 4411. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 4907 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
21adantl 275 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
3 df-ima 4617 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
4 funimaexg 5272 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
53, 4eqeltrrid 2254 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  B )  e.  _V )
62, 5jca 304 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  |`  B )  e.  _V  /\  ran  ( A  |`  B )  e.  _V ) )
7 xpexg 4718 . 2  |-  ( ( dom  ( A  |`  B )  e.  _V  /\ 
ran  ( A  |`  B )  e.  _V )  ->  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  e. 
_V )
8 relres 4912 . . . 4  |-  Rel  ( A  |`  B )
9 relssdmrn 5124 . . . 4  |-  ( Rel  ( A  |`  B )  ->  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) ) )
108, 9ax-mp 5 . . 3  |-  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )
11 ssexg 4121 . . 3  |-  ( ( ( A  |`  B ) 
C_  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  /\  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V )  ->  ( A  |`  B )  e.  _V )
1210, 11mpan 421 . 2  |-  ( ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V  ->  ( A  |`  B )  e.  _V )
136, 7, 123syl 17 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   _Vcvv 2726    C_ wss 3116    X. cxp 4602   dom cdm 4604   ran crn 4605    |` cres 4606   "cima 4607   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator