ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resfunexgALT Unicode version

Theorem resfunexgALT 6251
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5859 but requires ax-pow 4257 and ax-un 4523. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 5027 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
21adantl 277 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
3 df-ima 4731 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
4 funimaexg 5404 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
53, 4eqeltrrid 2317 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  B )  e.  _V )
62, 5jca 306 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  |`  B )  e.  _V  /\  ran  ( A  |`  B )  e.  _V ) )
7 xpexg 4832 . 2  |-  ( ( dom  ( A  |`  B )  e.  _V  /\ 
ran  ( A  |`  B )  e.  _V )  ->  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  e. 
_V )
8 relres 5032 . . . 4  |-  Rel  ( A  |`  B )
9 relssdmrn 5248 . . . 4  |-  ( Rel  ( A  |`  B )  ->  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) ) )
108, 9ax-mp 5 . . 3  |-  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )
11 ssexg 4222 . . 3  |-  ( ( ( A  |`  B ) 
C_  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  /\  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V )  ->  ( A  |`  B )  e.  _V )
1210, 11mpan 424 . 2  |-  ( ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V  ->  ( A  |`  B )  e.  _V )
136, 7, 123syl 17 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   _Vcvv 2799    C_ wss 3197    X. cxp 4716   dom cdm 4718   ran crn 4719    |` cres 4720   "cima 4721   Rel wrel 4723   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator