ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunexg Unicode version

Theorem cofunexg 6194
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 5181 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 5203 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 5 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 4948 . . . . 5  |-  dom  ( A  o.  B )  C_ 
dom  B
5 dmexg 4942 . . . . 5  |-  ( B  e.  C  ->  dom  B  e.  _V )
6 ssexg 4183 . . . . 5  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  dom  B  e. 
_V )  ->  dom  ( A  o.  B
)  e.  _V )
74, 5, 6sylancr 414 . . . 4  |-  ( B  e.  C  ->  dom  ( A  o.  B
)  e.  _V )
87adantl 277 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  o.  B
)  e.  _V )
9 rnco 5189 . . . 4  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
10 rnexg 4943 . . . . . 6  |-  ( B  e.  C  ->  ran  B  e.  _V )
11 resfunexg 5805 . . . . . 6  |-  ( ( Fun  A  /\  ran  B  e.  _V )  -> 
( A  |`  ran  B
)  e.  _V )
1210, 11sylan2 286 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  ran  B )  e.  _V )
13 rnexg 4943 . . . . 5  |-  ( ( A  |`  ran  B )  e.  _V  ->  ran  ( A  |`  ran  B
)  e.  _V )
1412, 13syl 14 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  ran  B
)  e.  _V )
159, 14eqeltrid 2292 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  o.  B
)  e.  _V )
16 xpexg 4789 . . 3  |-  ( ( dom  ( A  o.  B )  e.  _V  /\ 
ran  ( A  o.  B )  e.  _V )  ->  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B ) )  e. 
_V )
178, 15, 16syl2anc 411 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )
18 ssexg 4183 . 2  |-  ( ( ( A  o.  B
)  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  /\  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )  ->  ( A  o.  B
)  e.  _V )
193, 17, 18sylancr 414 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   _Vcvv 2772    C_ wss 3166    X. cxp 4673   dom cdm 4675   ran crn 4676    |` cres 4677    o. ccom 4679   Rel wrel 4680   Fun wfun 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  cofunex2g  6195  ctm  7211  ctssdclemr  7214  prdsex  13101  prdsval  13105  prdsbaslemss  13106
  Copyright terms: Public domain W3C validator