ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunexg Unicode version

Theorem cofunexg 6217
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunexg  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )

Proof of Theorem cofunexg
StepHypRef Expression
1 relco 5200 . . 3  |-  Rel  ( A  o.  B )
2 relssdmrn 5222 . . 3  |-  ( Rel  ( A  o.  B
)  ->  ( A  o.  B )  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
) )
31, 2ax-mp 5 . 2  |-  ( A  o.  B )  C_  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B
) )
4 dmcoss 4967 . . . . 5  |-  dom  ( A  o.  B )  C_ 
dom  B
5 dmexg 4961 . . . . 5  |-  ( B  e.  C  ->  dom  B  e.  _V )
6 ssexg 4199 . . . . 5  |-  ( ( dom  ( A  o.  B )  C_  dom  B  /\  dom  B  e. 
_V )  ->  dom  ( A  o.  B
)  e.  _V )
74, 5, 6sylancr 414 . . . 4  |-  ( B  e.  C  ->  dom  ( A  o.  B
)  e.  _V )
87adantl 277 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  o.  B
)  e.  _V )
9 rnco 5208 . . . 4  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
10 rnexg 4962 . . . . . 6  |-  ( B  e.  C  ->  ran  B  e.  _V )
11 resfunexg 5828 . . . . . 6  |-  ( ( Fun  A  /\  ran  B  e.  _V )  -> 
( A  |`  ran  B
)  e.  _V )
1210, 11sylan2 286 . . . . 5  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  ran  B )  e.  _V )
13 rnexg 4962 . . . . 5  |-  ( ( A  |`  ran  B )  e.  _V  ->  ran  ( A  |`  ran  B
)  e.  _V )
1412, 13syl 14 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  ran  B
)  e.  _V )
159, 14eqeltrid 2294 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  o.  B
)  e.  _V )
16 xpexg 4807 . . 3  |-  ( ( dom  ( A  o.  B )  e.  _V  /\ 
ran  ( A  o.  B )  e.  _V )  ->  ( dom  ( A  o.  B )  X.  ran  ( A  o.  B ) )  e. 
_V )
178, 15, 16syl2anc 411 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )
18 ssexg 4199 . 2  |-  ( ( ( A  o.  B
)  C_  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  /\  ( dom  ( A  o.  B
)  X.  ran  ( A  o.  B )
)  e.  _V )  ->  ( A  o.  B
)  e.  _V )
193, 17, 18sylancr 414 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  o.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   _Vcvv 2776    C_ wss 3174    X. cxp 4691   dom cdm 4693   ran crn 4694    |` cres 4695    o. ccom 4697   Rel wrel 4698   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298
This theorem is referenced by:  cofunex2g  6218  ctm  7237  ctssdclemr  7240  prdsex  13216  prdsval  13220  prdsbaslemss  13221
  Copyright terms: Public domain W3C validator