![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resfunexgALT | GIF version |
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5737 but requires ax-pow 4174 and ax-un 4433. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resfunexgALT | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresexg 4930 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
3 | df-ima 4639 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
4 | funimaexg 5300 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | |
5 | 3, 4 | eqeltrrid 2265 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ 𝐵) ∈ V) |
6 | 2, 5 | jca 306 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V)) |
7 | xpexg 4740 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V) → (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) | |
8 | relres 4935 | . . . 4 ⊢ Rel (𝐴 ↾ 𝐵) | |
9 | relssdmrn 5149 | . . . 4 ⊢ (Rel (𝐴 ↾ 𝐵) → (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) |
11 | ssexg 4142 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∧ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) → (𝐴 ↾ 𝐵) ∈ V) | |
12 | 10, 11 | mpan 424 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V → (𝐴 ↾ 𝐵) ∈ V) |
13 | 6, 7, 12 | 3syl 17 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2737 ⊆ wss 3129 × cxp 4624 dom cdm 4626 ran crn 4627 ↾ cres 4628 “ cima 4629 Rel wrel 4631 Fun wfun 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-fun 5218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |