![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resfunexgALT | GIF version |
Description: The restriction of a function to a set exists. Compare Proposition 6.17 of [TakeutiZaring] p. 28. This version has a shorter proof than resfunexg 5780 but requires ax-pow 4204 and ax-un 4465. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
resfunexgALT | ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresexg 4966 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → dom (𝐴 ↾ 𝐵) ∈ V) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → dom (𝐴 ↾ 𝐵) ∈ V) |
3 | df-ima 4673 | . . . 4 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
4 | funimaexg 5339 | . . . 4 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 “ 𝐵) ∈ V) | |
5 | 3, 4 | eqeltrrid 2281 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → ran (𝐴 ↾ 𝐵) ∈ V) |
6 | 2, 5 | jca 306 | . 2 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V)) |
7 | xpexg 4774 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) ∈ V ∧ ran (𝐴 ↾ 𝐵) ∈ V) → (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) | |
8 | relres 4971 | . . . 4 ⊢ Rel (𝐴 ↾ 𝐵) | |
9 | relssdmrn 5187 | . . . 4 ⊢ (Rel (𝐴 ↾ 𝐵) → (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵))) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) |
11 | ssexg 4169 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ⊆ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∧ (dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V) → (𝐴 ↾ 𝐵) ∈ V) | |
12 | 10, 11 | mpan 424 | . 2 ⊢ ((dom (𝐴 ↾ 𝐵) × ran (𝐴 ↾ 𝐵)) ∈ V → (𝐴 ↾ 𝐵) ∈ V) |
13 | 6, 7, 12 | 3syl 17 | 1 ⊢ ((Fun 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐴 ↾ 𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 × cxp 4658 dom cdm 4660 ran crn 4661 ↾ cres 4662 “ cima 4663 Rel wrel 4665 Fun wfun 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fun 5257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |