Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 |
Ref | Expression |
---|---|
rexlimdvva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | 2 | rexlimdvv 2589 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2448 df-rex 2449 |
This theorem is referenced by: ovelrn 5986 f1o2ndf1 6192 eroveu 6588 eroprf 6590 genipv 7446 genpelvl 7449 genpelvu 7450 genprndl 7458 genprndu 7459 addlocpr 7473 addnqprlemrl 7494 addnqprlemru 7495 mulnqprlemrl 7510 mulnqprlemru 7511 ltsopr 7533 ltaddpr 7534 ltexprlemfl 7546 ltexprlemrl 7547 ltexprlemfu 7548 ltexprlemru 7549 cauappcvgprlemladdfu 7591 cauappcvgprlemladdfl 7592 caucvgprlemdisj 7611 caucvgprlemladdfu 7614 caucvgprprlemdisj 7639 apreap 8481 apreim 8497 apirr 8499 apsym 8500 apcotr 8501 apadd1 8502 apneg 8505 mulext1 8506 apti 8516 aprcl 8540 qapne 9573 qtri3or 10174 exbtwnzlemex 10181 rebtwn2z 10186 cjap 10844 rexanre 11158 climcn2 11246 summodc 11320 prodmodclem2 11514 prodmodc 11515 eirrap 11714 dvds2lem 11739 bezoutlemnewy 11925 bezoutlembi 11934 dvdsmulgcd 11954 divgcdcoprm0 12029 cncongr1 12031 sqrt2irrap 12108 pcqmul 12231 pcneg 12252 pcadd 12267 4sqlem1 12314 4sqlem2 12315 4sqlem4 12318 mul4sq 12320 restbasg 12768 txbas 12858 blin2 13032 xmettxlem 13109 xmettx 13110 addcncntoplem 13151 mulcncf 13191 logbgcd1irr 13485 logbgcd1irrap 13488 2sqlem5 13555 2sqlem9 13560 |
Copyright terms: Public domain | W3C validator |