| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 |
|
| Ref | Expression |
|---|---|
| rexlimdvva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | rexlimdvv 2632 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 df-rex 2492 |
| This theorem is referenced by: ovelrn 6118 f1o2ndf1 6337 eroveu 6736 eroprf 6738 genipv 7657 genpelvl 7660 genpelvu 7661 genprndl 7669 genprndu 7670 addlocpr 7684 addnqprlemrl 7705 addnqprlemru 7706 mulnqprlemrl 7721 mulnqprlemru 7722 ltsopr 7744 ltaddpr 7745 ltexprlemfl 7757 ltexprlemrl 7758 ltexprlemfu 7759 ltexprlemru 7760 cauappcvgprlemladdfu 7802 cauappcvgprlemladdfl 7803 caucvgprlemdisj 7822 caucvgprlemladdfu 7825 caucvgprprlemdisj 7850 apreap 8695 apreim 8711 apirr 8713 apsym 8714 apcotr 8715 apadd1 8716 apneg 8719 mulext1 8720 apti 8730 aprcl 8754 qapne 9795 qtri3or 10420 exbtwnzlemex 10429 rebtwn2z 10434 cjap 11332 rexanre 11646 climcn2 11735 summodc 11809 prodmodclem2 12003 prodmodc 12004 eirrap 12204 dvds2lem 12229 bezoutlemnewy 12432 bezoutlembi 12441 dvdsmulgcd 12461 divgcdcoprm0 12538 cncongr1 12540 sqrt2irrap 12617 pcqmul 12741 pcneg 12763 pcadd 12778 4sqlem1 12826 4sqlem2 12827 4sqlem4 12830 mul4sq 12832 4sqlem12 12840 4sqlem13m 12841 4sqlem18 12846 imasaddfnlemg 13261 imasmnd2 13399 imasgrp2 13561 imasrng 13833 imasring 13941 dvdsrtr 13978 isnzr2 14061 lss1d 14260 znidom 14534 restbasg 14755 txbas 14845 blin2 15019 xmettxlem 15096 xmettx 15097 addcncntoplem 15148 mulcncf 15195 plyf 15324 plyadd 15338 plymul 15339 plyco 15346 plycj 15348 plycn 15349 plyrecj 15350 dvply2g 15353 logbgcd1irr 15554 logbgcd1irrap 15557 2sqlem5 15711 2sqlem9 15716 upgrpredgv 15850 |
| Copyright terms: Public domain | W3C validator |