![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexlimdvva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 113 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rexlimdvv 2495 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-i5r 1473 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-ral 2364 df-rex 2365 |
This theorem is referenced by: ovelrn 5793 f1o2ndf1 5993 eroveu 6381 eroprf 6383 genipv 7066 genpelvl 7069 genpelvu 7070 genprndl 7078 genprndu 7079 addlocpr 7093 addnqprlemrl 7114 addnqprlemru 7115 mulnqprlemrl 7130 mulnqprlemru 7131 ltsopr 7153 ltaddpr 7154 ltexprlemfl 7166 ltexprlemrl 7167 ltexprlemfu 7168 ltexprlemru 7169 cauappcvgprlemladdfu 7211 cauappcvgprlemladdfl 7212 caucvgprlemdisj 7231 caucvgprlemladdfu 7234 caucvgprprlemdisj 7259 apreap 8062 apreim 8078 apirr 8080 apsym 8081 apcotr 8082 apadd1 8083 apneg 8086 mulext1 8087 apti 8097 qapne 9122 qtri3or 9650 exbtwnzlemex 9657 rebtwn2z 9662 cjap 10336 rexanre 10649 climcn2 10694 isummo 10769 eirrap 11061 dvds2lem 11082 bezoutlemnewy 11259 bezoutlembi 11268 dvdsmulgcd 11288 divgcdcoprm0 11357 cncongr1 11359 sqrt2irrap 11432 |
Copyright terms: Public domain | W3C validator |