Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 |
Ref | Expression |
---|---|
rexlimdvva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | 2 | rexlimdvv 2594 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-ral 2453 df-rex 2454 |
This theorem is referenced by: ovelrn 5998 f1o2ndf1 6204 eroveu 6600 eroprf 6602 genipv 7458 genpelvl 7461 genpelvu 7462 genprndl 7470 genprndu 7471 addlocpr 7485 addnqprlemrl 7506 addnqprlemru 7507 mulnqprlemrl 7522 mulnqprlemru 7523 ltsopr 7545 ltaddpr 7546 ltexprlemfl 7558 ltexprlemrl 7559 ltexprlemfu 7560 ltexprlemru 7561 cauappcvgprlemladdfu 7603 cauappcvgprlemladdfl 7604 caucvgprlemdisj 7623 caucvgprlemladdfu 7626 caucvgprprlemdisj 7651 apreap 8493 apreim 8509 apirr 8511 apsym 8512 apcotr 8513 apadd1 8514 apneg 8517 mulext1 8518 apti 8528 aprcl 8552 qapne 9585 qtri3or 10186 exbtwnzlemex 10193 rebtwn2z 10198 cjap 10857 rexanre 11171 climcn2 11259 summodc 11333 prodmodclem2 11527 prodmodc 11528 eirrap 11727 dvds2lem 11752 bezoutlemnewy 11938 bezoutlembi 11947 dvdsmulgcd 11967 divgcdcoprm0 12042 cncongr1 12044 sqrt2irrap 12121 pcqmul 12244 pcneg 12265 pcadd 12280 4sqlem1 12327 4sqlem2 12328 4sqlem4 12331 mul4sq 12333 restbasg 12921 txbas 13011 blin2 13185 xmettxlem 13262 xmettx 13263 addcncntoplem 13304 mulcncf 13344 logbgcd1irr 13638 logbgcd1irrap 13641 2sqlem5 13708 2sqlem9 13713 |
Copyright terms: Public domain | W3C validator |