| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 |
|
| Ref | Expression |
|---|---|
| rexlimdvva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | rexlimdvv 2655 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: ovelrn 6153 f1o2ndf1 6372 eroveu 6771 eroprf 6773 genipv 7692 genpelvl 7695 genpelvu 7696 genprndl 7704 genprndu 7705 addlocpr 7719 addnqprlemrl 7740 addnqprlemru 7741 mulnqprlemrl 7756 mulnqprlemru 7757 ltsopr 7779 ltaddpr 7780 ltexprlemfl 7792 ltexprlemrl 7793 ltexprlemfu 7794 ltexprlemru 7795 cauappcvgprlemladdfu 7837 cauappcvgprlemladdfl 7838 caucvgprlemdisj 7857 caucvgprlemladdfu 7860 caucvgprprlemdisj 7885 apreap 8730 apreim 8746 apirr 8748 apsym 8749 apcotr 8750 apadd1 8751 apneg 8754 mulext1 8755 apti 8765 aprcl 8789 qapne 9830 qtri3or 10455 exbtwnzlemex 10464 rebtwn2z 10469 cjap 11412 rexanre 11726 climcn2 11815 summodc 11889 prodmodclem2 12083 prodmodc 12084 eirrap 12284 dvds2lem 12309 bezoutlemnewy 12512 bezoutlembi 12521 dvdsmulgcd 12541 divgcdcoprm0 12618 cncongr1 12620 sqrt2irrap 12697 pcqmul 12821 pcneg 12843 pcadd 12858 4sqlem1 12906 4sqlem2 12907 4sqlem4 12910 mul4sq 12912 4sqlem12 12920 4sqlem13m 12921 4sqlem18 12926 imasaddfnlemg 13342 imasmnd2 13480 imasgrp2 13642 imasrng 13914 imasring 14022 dvdsrtr 14059 isnzr2 14142 lss1d 14341 znidom 14615 restbasg 14836 txbas 14926 blin2 15100 xmettxlem 15177 xmettx 15178 addcncntoplem 15229 mulcncf 15276 plyf 15405 plyadd 15419 plymul 15420 plyco 15427 plycj 15429 plycn 15430 plyrecj 15431 dvply2g 15434 logbgcd1irr 15635 logbgcd1irrap 15638 2sqlem5 15792 2sqlem9 15797 upgrpredgv 15938 usgredg4 16007 |
| Copyright terms: Public domain | W3C validator |