![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexlimdvva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rexlimdvv 2601 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-ral 2460 df-rex 2461 |
This theorem is referenced by: ovelrn 6026 f1o2ndf1 6232 eroveu 6629 eroprf 6631 genipv 7511 genpelvl 7514 genpelvu 7515 genprndl 7523 genprndu 7524 addlocpr 7538 addnqprlemrl 7559 addnqprlemru 7560 mulnqprlemrl 7575 mulnqprlemru 7576 ltsopr 7598 ltaddpr 7599 ltexprlemfl 7611 ltexprlemrl 7612 ltexprlemfu 7613 ltexprlemru 7614 cauappcvgprlemladdfu 7656 cauappcvgprlemladdfl 7657 caucvgprlemdisj 7676 caucvgprlemladdfu 7679 caucvgprprlemdisj 7704 apreap 8547 apreim 8563 apirr 8565 apsym 8566 apcotr 8567 apadd1 8568 apneg 8571 mulext1 8572 apti 8582 aprcl 8606 qapne 9642 qtri3or 10246 exbtwnzlemex 10253 rebtwn2z 10258 cjap 10918 rexanre 11232 climcn2 11320 summodc 11394 prodmodclem2 11588 prodmodc 11589 eirrap 11788 dvds2lem 11813 bezoutlemnewy 12000 bezoutlembi 12009 dvdsmulgcd 12029 divgcdcoprm0 12104 cncongr1 12106 sqrt2irrap 12183 pcqmul 12306 pcneg 12327 pcadd 12342 4sqlem1 12389 4sqlem2 12390 4sqlem4 12393 mul4sq 12395 imasaddfnlemg 12741 dvdsrtr 13276 lss1d 13476 restbasg 13808 txbas 13898 blin2 14072 xmettxlem 14149 xmettx 14150 addcncntoplem 14191 mulcncf 14231 logbgcd1irr 14525 logbgcd1irrap 14528 2sqlem5 14606 2sqlem9 14611 |
Copyright terms: Public domain | W3C validator |