| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 |
|
| Ref | Expression |
|---|---|
| rexlimdvva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | rexlimdvv 2630 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: ovelrn 6095 f1o2ndf1 6314 eroveu 6713 eroprf 6715 genipv 7622 genpelvl 7625 genpelvu 7626 genprndl 7634 genprndu 7635 addlocpr 7649 addnqprlemrl 7670 addnqprlemru 7671 mulnqprlemrl 7686 mulnqprlemru 7687 ltsopr 7709 ltaddpr 7710 ltexprlemfl 7722 ltexprlemrl 7723 ltexprlemfu 7724 ltexprlemru 7725 cauappcvgprlemladdfu 7767 cauappcvgprlemladdfl 7768 caucvgprlemdisj 7787 caucvgprlemladdfu 7790 caucvgprprlemdisj 7815 apreap 8660 apreim 8676 apirr 8678 apsym 8679 apcotr 8680 apadd1 8681 apneg 8684 mulext1 8685 apti 8695 aprcl 8719 qapne 9760 qtri3or 10383 exbtwnzlemex 10392 rebtwn2z 10397 cjap 11217 rexanre 11531 climcn2 11620 summodc 11694 prodmodclem2 11888 prodmodc 11889 eirrap 12089 dvds2lem 12114 bezoutlemnewy 12317 bezoutlembi 12326 dvdsmulgcd 12346 divgcdcoprm0 12423 cncongr1 12425 sqrt2irrap 12502 pcqmul 12626 pcneg 12648 pcadd 12663 4sqlem1 12711 4sqlem2 12712 4sqlem4 12715 mul4sq 12717 4sqlem12 12725 4sqlem13m 12726 4sqlem18 12731 imasaddfnlemg 13146 imasmnd2 13284 imasgrp2 13446 imasrng 13718 imasring 13826 dvdsrtr 13863 isnzr2 13946 lss1d 14145 znidom 14419 restbasg 14640 txbas 14730 blin2 14904 xmettxlem 14981 xmettx 14982 addcncntoplem 15033 mulcncf 15080 plyf 15209 plyadd 15223 plymul 15224 plyco 15231 plycj 15233 plycn 15234 plyrecj 15235 dvply2g 15238 logbgcd1irr 15439 logbgcd1irrap 15442 2sqlem5 15596 2sqlem9 15601 |
| Copyright terms: Public domain | W3C validator |