| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvva | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvva.1 |
|
| Ref | Expression |
|---|---|
| rexlimdvva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvva.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | rexlimdvv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: ovelrn 6094 f1o2ndf1 6313 eroveu 6712 eroprf 6714 genipv 7621 genpelvl 7624 genpelvu 7625 genprndl 7633 genprndu 7634 addlocpr 7648 addnqprlemrl 7669 addnqprlemru 7670 mulnqprlemrl 7685 mulnqprlemru 7686 ltsopr 7708 ltaddpr 7709 ltexprlemfl 7721 ltexprlemrl 7722 ltexprlemfu 7723 ltexprlemru 7724 cauappcvgprlemladdfu 7766 cauappcvgprlemladdfl 7767 caucvgprlemdisj 7786 caucvgprlemladdfu 7789 caucvgprprlemdisj 7814 apreap 8659 apreim 8675 apirr 8677 apsym 8678 apcotr 8679 apadd1 8680 apneg 8683 mulext1 8684 apti 8694 aprcl 8718 qapne 9759 qtri3or 10381 exbtwnzlemex 10390 rebtwn2z 10395 cjap 11188 rexanre 11502 climcn2 11591 summodc 11665 prodmodclem2 11859 prodmodc 11860 eirrap 12060 dvds2lem 12085 bezoutlemnewy 12288 bezoutlembi 12297 dvdsmulgcd 12317 divgcdcoprm0 12394 cncongr1 12396 sqrt2irrap 12473 pcqmul 12597 pcneg 12619 pcadd 12634 4sqlem1 12682 4sqlem2 12683 4sqlem4 12686 mul4sq 12688 4sqlem12 12696 4sqlem13m 12697 4sqlem18 12702 imasaddfnlemg 13117 imasmnd2 13255 imasgrp2 13417 imasrng 13689 imasring 13797 dvdsrtr 13834 isnzr2 13917 lss1d 14116 znidom 14390 restbasg 14611 txbas 14701 blin2 14875 xmettxlem 14952 xmettx 14953 addcncntoplem 15004 mulcncf 15051 plyf 15180 plyadd 15194 plymul 15195 plyco 15202 plycj 15204 plycn 15205 plyrecj 15206 dvply2g 15209 logbgcd1irr 15410 logbgcd1irrap 15413 2sqlem5 15567 2sqlem9 15572 |
| Copyright terms: Public domain | W3C validator |