| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 |
|
| Ref | Expression |
|---|---|
| rexlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 |
. . 3
| |
| 2 | 1 | rexlimdva 2623 |
. 2
|
| 3 | 2 | rexlimiv 2617 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: opelxp 4706 f1o2ndf1 6316 xpdom2 6928 distrlem5prl 7701 distrlem5pru 7702 mulrid 8071 cnegex 8252 recexap 8728 creur 9034 creui 9035 cju 9036 elz2 9446 qre 9748 qaddcl 9758 qnegcl 9759 qmulcl 9760 qreccl 9765 elpqb 9773 fundm2domnop0 10992 replim 11203 prodmodc 11922 odd2np1 12217 opoe 12239 omoe 12240 opeo 12241 omeo 12242 qredeu 12452 pythagtriplem1 12621 pcz 12688 4sqlem1 12744 4sqlem2 12745 4sqlem4 12748 mul4sq 12750 txuni2 14761 blssioo 15058 tgioo 15059 elply 15239 2sqlem2 15625 mul2sq 15626 2sqlem7 15631 |
| Copyright terms: Public domain | W3C validator |