| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 |
|
| Ref | Expression |
|---|---|
| rexlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 |
. . 3
| |
| 2 | 1 | rexlimdva 2648 |
. 2
|
| 3 | 2 | rexlimiv 2642 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: opelxp 4749 f1o2ndf1 6374 xpdom2 6990 distrlem5prl 7773 distrlem5pru 7774 mulrid 8143 cnegex 8324 recexap 8800 creur 9106 creui 9107 cju 9108 elz2 9518 qre 9820 qaddcl 9830 qnegcl 9831 qmulcl 9832 qreccl 9837 elpqb 9845 fundm2domnop0 11067 replim 11370 prodmodc 12089 odd2np1 12384 opoe 12406 omoe 12407 opeo 12408 omeo 12409 qredeu 12619 pythagtriplem1 12788 pcz 12855 4sqlem1 12911 4sqlem2 12912 4sqlem4 12915 mul4sq 12917 txuni2 14930 blssioo 15227 tgioo 15228 elply 15408 2sqlem2 15794 mul2sq 15795 2sqlem7 15800 upgredgpr 15947 |
| Copyright terms: Public domain | W3C validator |