| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 |
|
| Ref | Expression |
|---|---|
| rexlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 |
. . 3
| |
| 2 | 1 | rexlimdva 2625 |
. 2
|
| 3 | 2 | rexlimiv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 df-rex 2492 |
| This theorem is referenced by: opelxp 4723 f1o2ndf1 6337 xpdom2 6951 distrlem5prl 7734 distrlem5pru 7735 mulrid 8104 cnegex 8285 recexap 8761 creur 9067 creui 9068 cju 9069 elz2 9479 qre 9781 qaddcl 9791 qnegcl 9792 qmulcl 9793 qreccl 9798 elpqb 9806 fundm2domnop0 11027 replim 11285 prodmodc 12004 odd2np1 12299 opoe 12321 omoe 12322 opeo 12323 omeo 12324 qredeu 12534 pythagtriplem1 12703 pcz 12770 4sqlem1 12826 4sqlem2 12827 4sqlem4 12830 mul4sq 12832 txuni2 14843 blssioo 15140 tgioo 15141 elply 15321 2sqlem2 15707 mul2sq 15708 2sqlem7 15713 upgredgpr 15853 |
| Copyright terms: Public domain | W3C validator |