| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimivv | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.) |
| Ref | Expression |
|---|---|
| rexlimivv.1 |
|
| Ref | Expression |
|---|---|
| rexlimivv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimivv.1 |
. . 3
| |
| 2 | 1 | rexlimdva 2623 |
. 2
|
| 3 | 2 | rexlimiv 2617 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-ral 2489 df-rex 2490 |
| This theorem is referenced by: opelxp 4705 f1o2ndf1 6314 xpdom2 6926 distrlem5prl 7699 distrlem5pru 7700 mulrid 8069 cnegex 8250 recexap 8726 creur 9032 creui 9033 cju 9034 elz2 9444 qre 9746 qaddcl 9756 qnegcl 9757 qmulcl 9758 qreccl 9763 elpqb 9771 fundm2domnop0 10990 replim 11170 prodmodc 11889 odd2np1 12184 opoe 12206 omoe 12207 opeo 12208 omeo 12209 qredeu 12419 pythagtriplem1 12588 pcz 12655 4sqlem1 12711 4sqlem2 12712 4sqlem4 12715 mul4sq 12717 txuni2 14728 blssioo 15025 tgioo 15026 elply 15206 2sqlem2 15592 mul2sq 15593 2sqlem7 15598 |
| Copyright terms: Public domain | W3C validator |