ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfng Unicode version

Theorem grpinvfng 13426
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b  |-  B  =  ( Base `  G
)
grpinvfn.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvfng  |-  ( G  e.  V  ->  N  Fn  B )

Proof of Theorem grpinvfng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvfn.b . . . . . 6  |-  B  =  ( Base `  G
)
2 basfn 12940 . . . . . . 7  |-  Base  Fn  _V
3 elex 2785 . . . . . . 7  |-  ( G  e.  V  ->  G  e.  _V )
4 funfvex 5603 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
54funfni 5382 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
62, 3, 5sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
71, 6eqeltrid 2293 . . . . 5  |-  ( G  e.  V  ->  B  e.  _V )
8 riotaexg 5913 . . . . 5  |-  ( B  e.  _V  ->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
97, 8syl 14 . . . 4  |-  ( G  e.  V  ->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
109ralrimivw 2581 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
11 eqid 2206 . . . 4  |-  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
1211fnmpt 5409 . . 3  |-  ( A. x  e.  B  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V  ->  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )  Fn  B )
1310, 12syl 14 . 2  |-  ( G  e.  V  ->  (
x  e.  B  |->  (
iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )  Fn  B )
14 eqid 2206 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
15 eqid 2206 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
16 grpinvfn.n . . . 4  |-  N  =  ( invg `  G )
171, 14, 15, 16grpinvfvalg 13424 . . 3  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) ) )
1817fneq1d 5370 . 2  |-  ( G  e.  V  ->  ( N  Fn  B  <->  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )  Fn  B ) )
1913, 18mpbird 167 1  |-  ( G  e.  V  ->  N  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773    |-> cmpt 4110    Fn wfn 5272   ` cfv 5277   iota_crio 5908  (class class class)co 5954   Basecbs 12882   +g cplusg 12959   0gc0g 13138   invgcminusg 13383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-inn 9050  df-ndx 12885  df-slot 12886  df-base 12888  df-minusg 13386
This theorem is referenced by:  isgrpinv  13436  mulgval  13508  mulgfng  13510  invrfvald  13934
  Copyright terms: Public domain W3C validator