ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfng Unicode version

Theorem grpinvfng 13585
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b  |-  B  =  ( Base `  G
)
grpinvfn.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvfng  |-  ( G  e.  V  ->  N  Fn  B )

Proof of Theorem grpinvfng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvfn.b . . . . . 6  |-  B  =  ( Base `  G
)
2 basfn 13099 . . . . . . 7  |-  Base  Fn  _V
3 elex 2811 . . . . . . 7  |-  ( G  e.  V  ->  G  e.  _V )
4 funfvex 5646 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
54funfni 5423 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
62, 3, 5sylancr 414 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
71, 6eqeltrid 2316 . . . . 5  |-  ( G  e.  V  ->  B  e.  _V )
8 riotaexg 5964 . . . . 5  |-  ( B  e.  _V  ->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
97, 8syl 14 . . . 4  |-  ( G  e.  V  ->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
109ralrimivw 2604 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
11 eqid 2229 . . . 4  |-  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
1211fnmpt 5450 . . 3  |-  ( A. x  e.  B  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V  ->  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )  Fn  B )
1310, 12syl 14 . 2  |-  ( G  e.  V  ->  (
x  e.  B  |->  (
iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )  Fn  B )
14 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
15 eqid 2229 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
16 grpinvfn.n . . . 4  |-  N  =  ( invg `  G )
171, 14, 15, 16grpinvfvalg 13583 . . 3  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) ) )
1817fneq1d 5411 . 2  |-  ( G  e.  V  ->  ( N  Fn  B  <->  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )  Fn  B ) )
1913, 18mpbird 167 1  |-  ( G  e.  V  ->  N  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    |-> cmpt 4145    Fn wfn 5313   ` cfv 5318   iota_crio 5959  (class class class)co 6007   Basecbs 13040   +g cplusg 13118   0gc0g 13297   invgcminusg 13542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-minusg 13545
This theorem is referenced by:  isgrpinv  13595  mulgval  13667  mulgfng  13669  invrfvald  14094
  Copyright terms: Public domain W3C validator