ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvfng Unicode version

Theorem grpinvfng 12747
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b  |-  B  =  ( Base `  G
)
grpinvfn.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvfng  |-  ( G  e.  V  ->  N  Fn  B )

Proof of Theorem grpinvfng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinvfn.b . . . . . 6  |-  B  =  ( Base `  G
)
2 basfn 12473 . . . . . . 7  |-  Base  Fn  _V
3 elex 2741 . . . . . . 7  |-  ( G  e.  V  ->  G  e.  _V )
4 funfvex 5513 . . . . . . . 8  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
54funfni 5298 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
62, 3, 5sylancr 412 . . . . . 6  |-  ( G  e.  V  ->  ( Base `  G )  e. 
_V )
71, 6eqeltrid 2257 . . . . 5  |-  ( G  e.  V  ->  B  e.  _V )
8 riotaexg 5813 . . . . 5  |-  ( B  e.  _V  ->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
97, 8syl 14 . . . 4  |-  ( G  e.  V  ->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
109ralrimivw 2544 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V )
11 eqid 2170 . . . 4  |-  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
1211fnmpt 5324 . . 3  |-  ( A. x  e.  B  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) )  e.  _V  ->  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )  Fn  B )
1310, 12syl 14 . 2  |-  ( G  e.  V  ->  (
x  e.  B  |->  (
iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )  Fn  B )
14 eqid 2170 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
15 eqid 2170 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
16 grpinvfn.n . . . 4  |-  N  =  ( invg `  G )
171, 14, 15, 16grpinvfvalg 12745 . . 3  |-  ( G  e.  V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) ) )
1817fneq1d 5288 . 2  |-  ( G  e.  V  ->  ( N  Fn  B  <->  ( x  e.  B  |->  ( iota_ y  e.  B  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )  Fn  B ) )
1913, 18mpbird 166 1  |-  ( G  e.  V  ->  N  Fn  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730    |-> cmpt 4050    Fn wfn 5193   ` cfv 5198   iota_crio 5808  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596   invgcminusg 12709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-minusg 12712
This theorem is referenced by:  isgrpinv  12756
  Copyright terms: Public domain W3C validator