ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0g Unicode version

Theorem fn0g 13403
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g  |-  0g  Fn  _V

Proof of Theorem fn0g
Dummy variables  e  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-riota 5953 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  =  ( iota e ( e  e.  ( Base `  g )  /\  A. x  e.  ( Base `  g ) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )
2 basfn 13086 . . . . 5  |-  Base  Fn  _V
3 vex 2802 . . . . 5  |-  g  e. 
_V
4 funfvex 5643 . . . . . 6  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
54funfni 5422 . . . . 5  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
62, 3, 5mp2an 426 . . . 4  |-  ( Base `  g )  e.  _V
7 riotaexg 5957 . . . 4  |-  ( (
Base `  g )  e.  _V  ->  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V )
86, 7ax-mp 5 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V
91, 8eqeltrri 2303 . 2  |-  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  e.  _V
10 df-0g 13286 . 2  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
119, 10fnmpti 5451 1  |-  0g  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   iotacio 5275    Fn wfn 5312   ` cfv 5317   iota_crio 5952  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   0gc0g 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-0g 13286
This theorem is referenced by:  fngsum  13416  igsumvalx  13417  gsumfzval  13419  gsum0g  13424  prdsidlem  13475  pws0g  13479  0mhm  13514  prdsinvlem  13636  mulgval  13654  mulgfng  13656  issrg  13923  isdomn  14227
  Copyright terms: Public domain W3C validator