ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0g Unicode version

Theorem fn0g 12958
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g  |-  0g  Fn  _V

Proof of Theorem fn0g
Dummy variables  e  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-riota 5873 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  =  ( iota e ( e  e.  ( Base `  g )  /\  A. x  e.  ( Base `  g ) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )
2 basfn 12676 . . . . 5  |-  Base  Fn  _V
3 vex 2763 . . . . 5  |-  g  e. 
_V
4 funfvex 5571 . . . . . 6  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
54funfni 5354 . . . . 5  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
62, 3, 5mp2an 426 . . . 4  |-  ( Base `  g )  e.  _V
7 riotaexg 5877 . . . 4  |-  ( (
Base `  g )  e.  _V  ->  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V )
86, 7ax-mp 5 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V
91, 8eqeltrri 2267 . 2  |-  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  e.  _V
10 df-0g 12869 . 2  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
119, 10fnmpti 5382 1  |-  0g  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   iotacio 5213    Fn wfn 5249   ` cfv 5254   iota_crio 5872  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-0g 12869
This theorem is referenced by:  fngsum  12971  igsumvalx  12972  gsumfzval  12974  gsum0g  12979  0mhm  13058  mulgval  13192  mulgfng  13194  issrg  13461  isdomn  13765
  Copyright terms: Public domain W3C validator