ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0g Unicode version

Theorem fn0g 12629
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g  |-  0g  Fn  _V

Proof of Theorem fn0g
Dummy variables  e  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-riota 5809 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  =  ( iota e ( e  e.  ( Base `  g )  /\  A. x  e.  ( Base `  g ) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )
2 basfn 12473 . . . . 5  |-  Base  Fn  _V
3 vex 2733 . . . . 5  |-  g  e. 
_V
4 funfvex 5513 . . . . . 6  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
54funfni 5298 . . . . 5  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
62, 3, 5mp2an 424 . . . 4  |-  ( Base `  g )  e.  _V
7 riotaexg 5813 . . . 4  |-  ( (
Base `  g )  e.  _V  ->  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V )
86, 7ax-mp 5 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V
91, 8eqeltrri 2244 . 2  |-  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  e.  _V
10 df-0g 12598 . 2  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
119, 10fnmpti 5326 1  |-  0g  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730   iotacio 5158    Fn wfn 5193   ` cfv 5198   iota_crio 5808  (class class class)co 5853   Basecbs 12416   +g cplusg 12480   0gc0g 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-riota 5809  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-0g 12598
This theorem is referenced by:  0mhm  12704
  Copyright terms: Public domain W3C validator