ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fn0g Unicode version

Theorem fn0g 13322
Description: The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Assertion
Ref Expression
fn0g  |-  0g  Fn  _V

Proof of Theorem fn0g
Dummy variables  e  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-riota 5922 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  =  ( iota e ( e  e.  ( Base `  g )  /\  A. x  e.  ( Base `  g ) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )
2 basfn 13005 . . . . 5  |-  Base  Fn  _V
3 vex 2779 . . . . 5  |-  g  e. 
_V
4 funfvex 5616 . . . . . 6  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
54funfni 5395 . . . . 5  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
62, 3, 5mp2an 426 . . . 4  |-  ( Base `  g )  e.  _V
7 riotaexg 5926 . . . 4  |-  ( (
Base `  g )  e.  _V  ->  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V )
86, 7ax-mp 5 . . 3  |-  ( iota_ e  e.  ( Base `  g
) A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) )  e. 
_V
91, 8eqeltrri 2281 . 2  |-  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) )  e.  _V
10 df-0g 13205 . 2  |-  0g  =  ( g  e.  _V  |->  ( iota e ( e  e.  ( Base `  g
)  /\  A. x  e.  ( Base `  g
) ( ( e ( +g  `  g
) x )  =  x  /\  ( x ( +g  `  g
) e )  =  x ) ) ) )
119, 10fnmpti 5424 1  |-  0g  Fn  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   iotacio 5249    Fn wfn 5285   ` cfv 5290   iota_crio 5921  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-0g 13205
This theorem is referenced by:  fngsum  13335  igsumvalx  13336  gsumfzval  13338  gsum0g  13343  prdsidlem  13394  pws0g  13398  0mhm  13433  prdsinvlem  13555  mulgval  13573  mulgfng  13575  issrg  13842  isdomn  14146
  Copyright terms: Public domain W3C validator