| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnxpm | GIF version | ||
| Description: The range of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37, with nonempty changed to inhabited. (Contributed by Jim Kingdon, 12-Dec-2018.) |
| Ref | Expression |
|---|---|
| rnxpm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rn 4707 | . . 3 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
| 2 | cnvxp 5123 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
| 3 | 2 | dmeqi 4901 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 4 | 1, 3 | eqtri 2230 | . 2 ⊢ ran (𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
| 5 | dmxpm 4920 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → dom (𝐵 × 𝐴) = 𝐵) | |
| 6 | 4, 5 | eqtrid 2254 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∃wex 1518 ∈ wcel 2180 × cxp 4694 ◡ccnv 4695 dom cdm 4696 ran crn 4697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-dm 4706 df-rn 4707 |
| This theorem is referenced by: ssxpbm 5140 ssxp2 5142 xpexr2m 5146 xpima2m 5152 unixpm 5240 djuexb 7179 exmidfodomrlemim 7347 elply2 15374 |
| Copyright terms: Public domain | W3C validator |