ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst Unicode version

Theorem climconst 11225
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1  |-  Z  =  ( ZZ>= `  M )
climconst.2  |-  ( ph  ->  M  e.  ZZ )
climconst.3  |-  ( ph  ->  F  e.  V )
climconst.4  |-  ( ph  ->  A  e.  CC )
climconst.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
climconst  |-  ( ph  ->  F  ~~>  A )
Distinct variable groups:    A, k    k, F    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)

Proof of Theorem climconst
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
2 uzid 9474 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 climconst.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrrdi 2258 . . . . 5  |-  ( ph  ->  M  e.  Z )
65adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  M  e.  Z )
7 climconst.4 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
87subidd 8191 . . . . . . . . 9  |-  ( ph  ->  ( A  -  A
)  =  0 )
98fveq2d 5487 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  ( abs `  0 ) )
10 abs0 10994 . . . . . . . 8  |-  ( abs `  0 )  =  0
119, 10eqtrdi 2213 . . . . . . 7  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  0 )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( A  -  A
) )  =  0 )
13 rpgt0 9595 . . . . . . 7  |-  ( x  e.  RR+  ->  0  < 
x )
1413adantl 275 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <  x )
1512, 14eqbrtrd 4001 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( A  -  A
) )  <  x
)
1615ralrimivw 2538 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  A. k  e.  Z  ( abs `  ( A  -  A
) )  <  x
)
17 fveq2 5483 . . . . . . 7  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
1817, 4eqtr4di 2215 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  Z )
1918raleqdv 2665 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  -  A ) )  <  x  <->  A. k  e.  Z  ( abs `  ( A  -  A
) )  <  x
) )
2019rspcev 2828 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  Z  ( abs `  ( A  -  A ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  -  A ) )  <  x )
216, 16, 20syl2anc 409 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  -  A )
)  <  x )
2221ralrimiva 2537 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( A  -  A
) )  <  x
)
23 climconst.3 . . 3  |-  ( ph  ->  F  e.  V )
24 climconst.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
257adantr 274 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
264, 1, 23, 24, 7, 25clim2c 11219 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  -  A )
)  <  x )
)
2722, 26mpbird 166 1  |-  ( ph  ->  F  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   class class class wbr 3979   ` cfv 5185  (class class class)co 5839   CCcc 7745   0cc0 7747    < clt 7927    - cmin 8063   ZZcz 9185   ZZ>=cuz 9460   RR+crp 9583   abscabs 10933    ~~> cli 11213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-apti 7862  ax-pre-ltadd 7863  ax-pre-mulgt0 7864  ax-pre-mulext 7865
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-po 4271  df-iso 4272  df-iord 4341  df-on 4343  df-ilim 4344  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-recs 6267  df-frec 6353  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-reap 8467  df-ap 8474  df-div 8563  df-inn 8852  df-2 8910  df-n0 9109  df-z 9186  df-uz 9461  df-rp 9584  df-seqfrec 10375  df-exp 10449  df-cj 10778  df-rsqrt 10934  df-abs 10935  df-clim 11214
This theorem is referenced by:  climconst2  11226  fsum3cvg  11313  fproddccvg  11507  fprodntrivap  11519
  Copyright terms: Public domain W3C validator