ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst Unicode version

Theorem climconst 11253
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1  |-  Z  =  ( ZZ>= `  M )
climconst.2  |-  ( ph  ->  M  e.  ZZ )
climconst.3  |-  ( ph  ->  F  e.  V )
climconst.4  |-  ( ph  ->  A  e.  CC )
climconst.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
climconst  |-  ( ph  ->  F  ~~>  A )
Distinct variable groups:    A, k    k, F    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)

Proof of Theorem climconst
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
2 uzid 9501 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 climconst.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrrdi 2264 . . . . 5  |-  ( ph  ->  M  e.  Z )
65adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  M  e.  Z )
7 climconst.4 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
87subidd 8218 . . . . . . . . 9  |-  ( ph  ->  ( A  -  A
)  =  0 )
98fveq2d 5500 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  ( abs `  0 ) )
10 abs0 11022 . . . . . . . 8  |-  ( abs `  0 )  =  0
119, 10eqtrdi 2219 . . . . . . 7  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  0 )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( A  -  A
) )  =  0 )
13 rpgt0 9622 . . . . . . 7  |-  ( x  e.  RR+  ->  0  < 
x )
1413adantl 275 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <  x )
1512, 14eqbrtrd 4011 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( A  -  A
) )  <  x
)
1615ralrimivw 2544 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  A. k  e.  Z  ( abs `  ( A  -  A
) )  <  x
)
17 fveq2 5496 . . . . . . 7  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
1817, 4eqtr4di 2221 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  Z )
1918raleqdv 2671 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  -  A ) )  <  x  <->  A. k  e.  Z  ( abs `  ( A  -  A
) )  <  x
) )
2019rspcev 2834 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  Z  ( abs `  ( A  -  A ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  -  A ) )  <  x )
216, 16, 20syl2anc 409 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  -  A )
)  <  x )
2221ralrimiva 2543 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( A  -  A
) )  <  x
)
23 climconst.3 . . 3  |-  ( ph  ->  F  e.  V )
24 climconst.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
257adantr 274 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
264, 1, 23, 24, 7, 25clim2c 11247 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  -  A )
)  <  x )
)
2722, 26mpbird 166 1  |-  ( ph  ->  F  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774    < clt 7954    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610   abscabs 10961    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  climconst2  11254  fsum3cvg  11341  fproddccvg  11535  fprodntrivap  11547
  Copyright terms: Public domain W3C validator