| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addlelt | Unicode version | ||
| Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| addlelt | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpgt0 9740 | 
. . . 4
 | |
| 2 | 1 | 3ad2ant3 1022 | 
. . 3
 | 
| 3 | rpre 9735 | 
. . . . 5
 | |
| 4 | 3 | 3ad2ant3 1022 | 
. . . 4
 | 
| 5 | simp1 999 | 
. . . 4
 | |
| 6 | 4, 5 | ltaddposd 8556 | 
. . 3
 | 
| 7 | 2, 6 | mpbid 147 | 
. 2
 | 
| 8 | simpl 109 | 
. . . . 5
 | |
| 9 | 3 | adantl 277 | 
. . . . 5
 | 
| 10 | 8, 9 | readdcld 8056 | 
. . . 4
 | 
| 11 | 10 | 3adant2 1018 | 
. . 3
 | 
| 12 | simp2 1000 | 
. . 3
 | |
| 13 | ltletr 8116 | 
. . 3
 | |
| 14 | 5, 11, 12, 13 | syl3anc 1249 | 
. 2
 | 
| 15 | 7, 14 | mpand 429 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-pre-ltwlin 7992 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-rp 9729 | 
| This theorem is referenced by: zltaddlt1le 10082 | 
| Copyright terms: Public domain | W3C validator |