ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlelt Unicode version

Theorem addlelt 9890
Description: If the sum of a real number and a positive real number is less than or equal to a third real number, the first real number is less than the third real number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
addlelt  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )

Proof of Theorem addlelt
StepHypRef Expression
1 rpgt0 9787 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
213ad2ant3 1023 . . 3  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  0  <  A )
3 rpre 9782 . . . . 5  |-  ( A  e.  RR+  ->  A  e.  RR )
433ad2ant3 1023 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  A  e.  RR )
5 simp1 1000 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  M  e.  RR )
64, 5ltaddposd 8602 . . 3  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
0  <  A  <->  M  <  ( M  +  A ) ) )
72, 6mpbid 147 . 2  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  M  <  ( M  +  A
) )
8 simpl 109 . . . . 5  |-  ( ( M  e.  RR  /\  A  e.  RR+ )  ->  M  e.  RR )
93adantl 277 . . . . 5  |-  ( ( M  e.  RR  /\  A  e.  RR+ )  ->  A  e.  RR )
108, 9readdcld 8102 . . . 4  |-  ( ( M  e.  RR  /\  A  e.  RR+ )  -> 
( M  +  A
)  e.  RR )
11103adant2 1019 . . 3  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  ( M  +  A )  e.  RR )
12 simp2 1001 . . 3  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  N  e.  RR )
13 ltletr 8162 . . 3  |-  ( ( M  e.  RR  /\  ( M  +  A
)  e.  RR  /\  N  e.  RR )  ->  ( ( M  < 
( M  +  A
)  /\  ( M  +  A )  <_  N
)  ->  M  <  N ) )
145, 11, 12, 13syl3anc 1250 . 2  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  <  ( M  +  A )  /\  ( M  +  A
)  <_  N )  ->  M  <  N ) )
157, 14mpand 429 1  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  A  e.  RR+ )  ->  (
( M  +  A
)  <_  N  ->  M  <  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928    < clt 8107    <_ cle 8108   RR+crp 9775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-pre-ltwlin 8038  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-iota 5232  df-fv 5279  df-ov 5947  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-rp 9776
This theorem is referenced by:  zltaddlt1le  10129
  Copyright terms: Public domain W3C validator