ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn Unicode version

Theorem bdmopn 13555
Description: The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
stdbdmopn.2  |-  J  =  ( MetOpen `  C )
Assertion
Ref Expression
bdmopn  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    J( x, y)

Proof of Theorem bdmopn
Dummy variables  r  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9630 . . . . . . . 8  |-  ( r  e.  RR+  ->  r  e. 
RR* )
21ad2antll 491 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
3 simpl2 1001 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  R  e.  RR* )
4 xrmincl 11240 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
52, 3, 4syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
6 rpre 9629 . . . . . . 7  |-  ( r  e.  RR+  ->  r  e.  RR )
76ad2antll 491 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR )
8 0xr 7978 . . . . . . . 8  |-  0  e.  RR*
98a1i 9 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  e.  RR* )
10 rpgt0 9634 . . . . . . . . 9  |-  ( r  e.  RR+  ->  0  < 
r )
1110ad2antll 491 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  r )
12 simpl3 1002 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  R )
13 xrltmininf 11244 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  r  e.  RR*  /\  R  e. 
RR* )  ->  (
0  < inf ( {
r ,  R } ,  RR* ,  <  )  <->  ( 0  <  r  /\  0  <  R ) ) )
148, 2, 3, 13mp3an2i 1342 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( 0  < inf ( { r ,  R } ,  RR* ,  <  )  <-> 
( 0  <  r  /\  0  <  R ) ) )
1511, 12, 14mpbir2and 944 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  < inf ( {
r ,  R } ,  RR* ,  <  )
)
169, 5, 15xrltled 9768 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )
)
17 xrmin1inf 11241 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
182, 3, 17syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
19 xrrege0 9794 . . . . . 6  |-  ( ( (inf ( { r ,  R } ,  RR* ,  <  )  e. 
RR*  /\  r  e.  RR )  /\  (
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  r
) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
205, 7, 16, 18, 19syl22anc 1239 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
2120, 15elrpd 9662 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+ )
22 simprl 529 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
z  e.  X )
23 xrmin2inf 11242 . . . . . . . 8  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
242, 3, 23syl2anc 411 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
2522, 5, 243jca 1177 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  R
) )
26 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
2726bdbl 13554 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( {
r ,  R } ,  RR* ,  <  )  <_  R ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2825, 27syldan 282 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2928eqcomd 2181 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  C )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
30 breq1 4001 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( s  <_  r  <-> inf ( { r ,  R } ,  RR* ,  <  )  <_  r ) )
31 oveq2 5873 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  C ) s )  =  ( z (
ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) ) )
32 oveq2 5873 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  D ) s )  =  ( z (
ball `  D )inf ( { r ,  R } ,  RR* ,  <  ) ) )
3331, 32eqeq12d 2190 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( z (
ball `  C )
s )  =  ( z ( ball `  D
) s )  <->  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )
3430, 33anbi12d 473 . . . . 5  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  <-> 
(inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) ) )
3534rspcev 2839 . . . 4  |-  ( (inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+  /\  (inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )  ->  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
3621, 18, 29, 35syl12anc 1236 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  (
s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) ) )
3736ralrimivva 2557 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
38 simp1 997 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
3926bdxmet 13552 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
40 stdbdmopn.2 . . . 4  |-  J  =  ( MetOpen `  C )
41 eqid 2175 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4240, 41metequiv2 13547 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  ->  J  =  (
MetOpen `  D ) ) )
4338, 39, 42syl2anc 411 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) )  ->  J  =  ( MetOpen `  D ) ) )
4437, 43mpd 13 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   {cpr 3590   class class class wbr 3998   ` cfv 5208  (class class class)co 5865    e. cmpo 5867  infcinf 6972   RRcr 7785   0cc0 7786   RR*cxr 7965    < clt 7966    <_ cle 7967   RR+crp 9622   *Metcxmet 13031   ballcbl 13033   MetOpencmopn 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-map 6640  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-xneg 9741  df-xadd 9742  df-icc 9864  df-seqfrec 10414  df-exp 10488  df-cj 10817  df-re 10818  df-im 10819  df-rsqrt 10973  df-abs 10974  df-topgen 12629  df-psmet 13038  df-xmet 13039  df-bl 13041  df-mopn 13042  df-top 13047  df-bases 13092
This theorem is referenced by:  mopnex  13556
  Copyright terms: Public domain W3C validator