ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn Unicode version

Theorem bdmopn 15178
Description: The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
stdbdmopn.2  |-  J  =  ( MetOpen `  C )
Assertion
Ref Expression
bdmopn  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    J( x, y)

Proof of Theorem bdmopn
Dummy variables  r  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9857 . . . . . . . 8  |-  ( r  e.  RR+  ->  r  e. 
RR* )
21ad2antll 491 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
3 simpl2 1025 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  R  e.  RR* )
4 xrmincl 11777 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
52, 3, 4syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
6 rpre 9856 . . . . . . 7  |-  ( r  e.  RR+  ->  r  e.  RR )
76ad2antll 491 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR )
8 0xr 8193 . . . . . . . 8  |-  0  e.  RR*
98a1i 9 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  e.  RR* )
10 rpgt0 9861 . . . . . . . . 9  |-  ( r  e.  RR+  ->  0  < 
r )
1110ad2antll 491 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  r )
12 simpl3 1026 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  R )
13 xrltmininf 11781 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  r  e.  RR*  /\  R  e. 
RR* )  ->  (
0  < inf ( {
r ,  R } ,  RR* ,  <  )  <->  ( 0  <  r  /\  0  <  R ) ) )
148, 2, 3, 13mp3an2i 1376 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( 0  < inf ( { r ,  R } ,  RR* ,  <  )  <-> 
( 0  <  r  /\  0  <  R ) ) )
1511, 12, 14mpbir2and 950 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  < inf ( {
r ,  R } ,  RR* ,  <  )
)
169, 5, 15xrltled 9995 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )
)
17 xrmin1inf 11778 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
182, 3, 17syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
19 xrrege0 10021 . . . . . 6  |-  ( ( (inf ( { r ,  R } ,  RR* ,  <  )  e. 
RR*  /\  r  e.  RR )  /\  (
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  r
) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
205, 7, 16, 18, 19syl22anc 1272 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
2120, 15elrpd 9889 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+ )
22 simprl 529 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
z  e.  X )
23 xrmin2inf 11779 . . . . . . . 8  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
242, 3, 23syl2anc 411 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
2522, 5, 243jca 1201 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  R
) )
26 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
2726bdbl 15177 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( {
r ,  R } ,  RR* ,  <  )  <_  R ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2825, 27syldan 282 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2928eqcomd 2235 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  C )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
30 breq1 4086 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( s  <_  r  <-> inf ( { r ,  R } ,  RR* ,  <  )  <_  r ) )
31 oveq2 6009 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  C ) s )  =  ( z (
ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) ) )
32 oveq2 6009 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  D ) s )  =  ( z (
ball `  D )inf ( { r ,  R } ,  RR* ,  <  ) ) )
3331, 32eqeq12d 2244 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( z (
ball `  C )
s )  =  ( z ( ball `  D
) s )  <->  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )
3430, 33anbi12d 473 . . . . 5  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  <-> 
(inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) ) )
3534rspcev 2907 . . . 4  |-  ( (inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+  /\  (inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )  ->  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
3621, 18, 29, 35syl12anc 1269 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  (
s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) ) )
3736ralrimivva 2612 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
38 simp1 1021 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
3926bdxmet 15175 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
40 stdbdmopn.2 . . . 4  |-  J  =  ( MetOpen `  C )
41 eqid 2229 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4240, 41metequiv2 15170 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  ->  J  =  (
MetOpen `  D ) ) )
4338, 39, 42syl2anc 411 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) )  ->  J  =  ( MetOpen `  D ) ) )
4437, 43mpd 13 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {cpr 3667   class class class wbr 4083   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  infcinf 7150   RRcr 7998   0cc0 7999   RR*cxr 8180    < clt 8181    <_ cle 8182   RR+crp 9849   *Metcxmet 14500   ballcbl 14502   MetOpencmopn 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-map 6797  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-icc 10091  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-bl 14510  df-mopn 14511  df-top 14672  df-bases 14717
This theorem is referenced by:  mopnex  15179
  Copyright terms: Public domain W3C validator