ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn Unicode version

Theorem bdmopn 14740
Description: The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
stdbdmopn.2  |-  J  =  ( MetOpen `  C )
Assertion
Ref Expression
bdmopn  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    J( x, y)

Proof of Theorem bdmopn
Dummy variables  r  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9736 . . . . . . . 8  |-  ( r  e.  RR+  ->  r  e. 
RR* )
21ad2antll 491 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
3 simpl2 1003 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  R  e.  RR* )
4 xrmincl 11431 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
52, 3, 4syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
6 rpre 9735 . . . . . . 7  |-  ( r  e.  RR+  ->  r  e.  RR )
76ad2antll 491 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR )
8 0xr 8073 . . . . . . . 8  |-  0  e.  RR*
98a1i 9 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  e.  RR* )
10 rpgt0 9740 . . . . . . . . 9  |-  ( r  e.  RR+  ->  0  < 
r )
1110ad2antll 491 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  r )
12 simpl3 1004 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  R )
13 xrltmininf 11435 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  r  e.  RR*  /\  R  e. 
RR* )  ->  (
0  < inf ( {
r ,  R } ,  RR* ,  <  )  <->  ( 0  <  r  /\  0  <  R ) ) )
148, 2, 3, 13mp3an2i 1353 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( 0  < inf ( { r ,  R } ,  RR* ,  <  )  <-> 
( 0  <  r  /\  0  <  R ) ) )
1511, 12, 14mpbir2and 946 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  < inf ( {
r ,  R } ,  RR* ,  <  )
)
169, 5, 15xrltled 9874 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )
)
17 xrmin1inf 11432 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
182, 3, 17syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
19 xrrege0 9900 . . . . . 6  |-  ( ( (inf ( { r ,  R } ,  RR* ,  <  )  e. 
RR*  /\  r  e.  RR )  /\  (
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  r
) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
205, 7, 16, 18, 19syl22anc 1250 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
2120, 15elrpd 9768 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+ )
22 simprl 529 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
z  e.  X )
23 xrmin2inf 11433 . . . . . . . 8  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
242, 3, 23syl2anc 411 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
2522, 5, 243jca 1179 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  R
) )
26 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
2726bdbl 14739 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( {
r ,  R } ,  RR* ,  <  )  <_  R ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2825, 27syldan 282 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2928eqcomd 2202 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  C )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
30 breq1 4036 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( s  <_  r  <-> inf ( { r ,  R } ,  RR* ,  <  )  <_  r ) )
31 oveq2 5930 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  C ) s )  =  ( z (
ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) ) )
32 oveq2 5930 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  D ) s )  =  ( z (
ball `  D )inf ( { r ,  R } ,  RR* ,  <  ) ) )
3331, 32eqeq12d 2211 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( z (
ball `  C )
s )  =  ( z ( ball `  D
) s )  <->  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )
3430, 33anbi12d 473 . . . . 5  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  <-> 
(inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) ) )
3534rspcev 2868 . . . 4  |-  ( (inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+  /\  (inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )  ->  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
3621, 18, 29, 35syl12anc 1247 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  (
s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) ) )
3736ralrimivva 2579 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
38 simp1 999 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
3926bdxmet 14737 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
40 stdbdmopn.2 . . . 4  |-  J  =  ( MetOpen `  C )
41 eqid 2196 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4240, 41metequiv2 14732 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  ->  J  =  (
MetOpen `  D ) ) )
4338, 39, 42syl2anc 411 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) )  ->  J  =  ( MetOpen `  D ) ) )
4437, 43mpd 13 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {cpr 3623   class class class wbr 4033   ` cfv 5258  (class class class)co 5922    e. cmpo 5924  infcinf 7049   RRcr 7878   0cc0 7879   RR*cxr 8060    < clt 8061    <_ cle 8062   RR+crp 9728   *Metcxmet 14092   ballcbl 14094   MetOpencmopn 14097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-icc 9970  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-bl 14102  df-mopn 14103  df-top 14234  df-bases 14279
This theorem is referenced by:  mopnex  14741
  Copyright terms: Public domain W3C validator