ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmopn Unicode version

Theorem bdmopn 12673
Description: The standard bounded metric corresponding to  C generates the same topology as  C. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypotheses
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
stdbdmopn.2  |-  J  =  ( MetOpen `  C )
Assertion
Ref Expression
bdmopn  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)    J( x, y)

Proof of Theorem bdmopn
Dummy variables  r  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpxr 9449 . . . . . . . 8  |-  ( r  e.  RR+  ->  r  e. 
RR* )
21ad2antll 482 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
3 simpl2 985 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  R  e.  RR* )
4 xrmincl 11035 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
52, 3, 4syl2anc 408 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR* )
6 rpre 9448 . . . . . . 7  |-  ( r  e.  RR+  ->  r  e.  RR )
76ad2antll 482 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
r  e.  RR )
8 0xr 7812 . . . . . . . 8  |-  0  e.  RR*
98a1i 9 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  e.  RR* )
10 rpgt0 9453 . . . . . . . . 9  |-  ( r  e.  RR+  ->  0  < 
r )
1110ad2antll 482 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  r )
12 simpl3 986 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <  R )
13 xrltmininf 11039 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  r  e.  RR*  /\  R  e. 
RR* )  ->  (
0  < inf ( {
r ,  R } ,  RR* ,  <  )  <->  ( 0  <  r  /\  0  <  R ) ) )
148, 2, 3, 13mp3an2i 1320 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( 0  < inf ( { r ,  R } ,  RR* ,  <  )  <-> 
( 0  <  r  /\  0  <  R ) ) )
1511, 12, 14mpbir2and 928 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  < inf ( {
r ,  R } ,  RR* ,  <  )
)
169, 5, 15xrltled 9585 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )
)
17 xrmin1inf 11036 . . . . . . 7  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
182, 3, 17syl2anc 408 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  r )
19 xrrege0 9608 . . . . . 6  |-  ( ( (inf ( { r ,  R } ,  RR* ,  <  )  e. 
RR*  /\  r  e.  RR )  /\  (
0  <_ inf ( {
r ,  R } ,  RR* ,  <  )  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  r
) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
205, 7, 16, 18, 19syl22anc 1217 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR )
2120, 15elrpd 9481 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+ )
22 simprl 520 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
z  e.  X )
23 xrmin2inf 11037 . . . . . . . 8  |-  ( ( r  e.  RR*  /\  R  e.  RR* )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
242, 3, 23syl2anc 408 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> inf ( { r ,  R } ,  RR* ,  <  )  <_  R )
2522, 5, 243jca 1161 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( { r ,  R } ,  RR* ,  <  )  <_  R
) )
26 stdbdmet.1 . . . . . . 7  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
2726bdbl 12672 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\ inf ( { r ,  R } ,  RR* ,  <  )  e.  RR*  /\ inf ( {
r ,  R } ,  RR* ,  <  )  <_  R ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2825, 27syldan 280 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  D )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  C
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
2928eqcomd 2145 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  -> 
( z ( ball `  C )inf ( { r ,  R } ,  RR* ,  <  )
)  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) )
30 breq1 3932 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( s  <_  r  <-> inf ( { r ,  R } ,  RR* ,  <  )  <_  r ) )
31 oveq2 5782 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  C ) s )  =  ( z (
ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) ) )
32 oveq2 5782 . . . . . . 7  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( z ( ball `  D ) s )  =  ( z (
ball `  D )inf ( { r ,  R } ,  RR* ,  <  ) ) )
3331, 32eqeq12d 2154 . . . . . 6  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( z (
ball `  C )
s )  =  ( z ( ball `  D
) s )  <->  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )
3430, 33anbi12d 464 . . . . 5  |-  ( s  = inf ( { r ,  R } ,  RR* ,  <  )  -> 
( ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  <-> 
(inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) ) )
3534rspcev 2789 . . . 4  |-  ( (inf ( { r ,  R } ,  RR* ,  <  )  e.  RR+  /\  (inf ( { r ,  R } ,  RR* ,  <  )  <_ 
r  /\  ( z
( ball `  C )inf ( { r ,  R } ,  RR* ,  <  ) )  =  ( z ( ball `  D
)inf ( { r ,  R } ,  RR* ,  <  ) ) ) )  ->  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
3621, 18, 29, 35syl12anc 1214 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( z  e.  X  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  (
s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) ) )
3736ralrimivva 2514 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) ) )
38 simp1 981 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
3926bdxmet 12670 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
40 stdbdmopn.2 . . . 4  |-  J  =  ( MetOpen `  C )
41 eqid 2139 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
4240, 41metequiv2 12665 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_ 
r  /\  ( z
( ball `  C )
s )  =  ( z ( ball `  D
) s ) )  ->  J  =  (
MetOpen `  D ) ) )
4338, 39, 42syl2anc 408 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( A. z  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( s  <_  r  /\  ( z ( ball `  C ) s )  =  ( z (
ball `  D )
s ) )  ->  J  =  ( MetOpen `  D ) ) )
4437, 43mpd 13 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  J  =  (
MetOpen `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {cpr 3528   class class class wbr 3929   ` cfv 5123  (class class class)co 5774    e. cmpo 5776  infcinf 6870   RRcr 7619   0cc0 7620   RR*cxr 7799    < clt 7800    <_ cle 7801   RR+crp 9441   *Metcxmet 12149   ballcbl 12151   MetOpencmopn 12154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-icc 9678  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-bl 12159  df-mopn 12160  df-top 12165  df-bases 12210
This theorem is referenced by:  mopnex  12674
  Copyright terms: Public domain W3C validator