ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmet Unicode version

Theorem bdmet 12660
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdmet
StepHypRef Expression
1 rpxr 9442 . . . 4  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2 rpgt0 9446 . . . 4  |-  ( R  e.  RR+  ->  0  < 
R )
31, 2jca 304 . . 3  |-  ( R  e.  RR+  ->  ( R  e.  RR*  /\  0  <  R ) )
4 stdbdmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
54bdxmet 12659 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
653expb 1182 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  ( R  e. 
RR*  /\  0  <  R ) )  ->  D  e.  ( *Met `  X ) )
73, 6sylan2 284 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
8 xmetcl 12510 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
983expb 1182 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
109adantlr 468 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
111ad2antlr 480 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR* )
12 xrmincl 11028 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
1310, 11, 12syl2anc 408 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
14 rpre 9441 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
1514ad2antlr 480 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR )
16 xmetge0 12523 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
17163expb 1182 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
1817adantlr 468 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
19 rpge0 9447 . . . . . . 7  |-  ( R  e.  RR+  ->  0  <_  R )
2019ad2antlr 480 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  R )
21 0xr 7805 . . . . . . 7  |-  0  e.  RR*
22 xrlemininf 11033 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  (
x C y )  e.  RR*  /\  R  e. 
RR* )  ->  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2321, 10, 11, 22mp3an2i 1320 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( 0  <_ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2418, 20, 23mpbir2and 928 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )
)
25 xrmin2inf 11030 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
2610, 11, 25syl2anc 408 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
27 xrrege0 9601 . . . . 5  |-  ( ( (inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e. 
RR*  /\  R  e.  RR )  /\  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  /\ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R
) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2813, 15, 24, 26, 27syl22anc 1217 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2928ralrimivva 2512 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
304fmpo 6092 . . 3  |-  ( A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR  <->  D :
( X  X.  X
) --> RR )
3129, 30sylib 121 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D : ( X  X.  X ) --> RR )
32 ismet2 12512 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
337, 31, 32sylanbrc 413 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414   {cpr 3523   class class class wbr 3924    X. cxp 4532   -->wf 5114   ` cfv 5118  (class class class)co 5767    e. cmpo 5769  infcinf 6863   RRcr 7612   0cc0 7613   RR*cxr 7792    < clt 7793    <_ cle 7794   RR+crp 9434   *Metcxmet 12138   Metcmet 12139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-map 6537  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-xneg 9552  df-xadd 9553  df-icc 9671  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-xmet 12146  df-met 12147
This theorem is referenced by:  mopnex  12663
  Copyright terms: Public domain W3C validator