ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmet Unicode version

Theorem bdmet 15089
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdmet
StepHypRef Expression
1 rpxr 9818 . . . 4  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2 rpgt0 9822 . . . 4  |-  ( R  e.  RR+  ->  0  < 
R )
31, 2jca 306 . . 3  |-  ( R  e.  RR+  ->  ( R  e.  RR*  /\  0  <  R ) )
4 stdbdmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
54bdxmet 15088 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
653expb 1207 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  ( R  e. 
RR*  /\  0  <  R ) )  ->  D  e.  ( *Met `  X ) )
73, 6sylan2 286 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
8 xmetcl 14939 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
983expb 1207 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
109adantlr 477 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
111ad2antlr 489 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR* )
12 xrmincl 11692 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
1310, 11, 12syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
14 rpre 9817 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
1514ad2antlr 489 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR )
16 xmetge0 14952 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
17163expb 1207 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
1817adantlr 477 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
19 rpge0 9823 . . . . . . 7  |-  ( R  e.  RR+  ->  0  <_  R )
2019ad2antlr 489 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  R )
21 0xr 8154 . . . . . . 7  |-  0  e.  RR*
22 xrlemininf 11697 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  (
x C y )  e.  RR*  /\  R  e. 
RR* )  ->  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2321, 10, 11, 22mp3an2i 1355 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( 0  <_ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2418, 20, 23mpbir2and 947 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )
)
25 xrmin2inf 11694 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
2610, 11, 25syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
27 xrrege0 9982 . . . . 5  |-  ( ( (inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e. 
RR*  /\  R  e.  RR )  /\  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  /\ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R
) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2813, 15, 24, 26, 27syl22anc 1251 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2928ralrimivva 2590 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
304fmpo 6310 . . 3  |-  ( A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR  <->  D :
( X  X.  X
) --> RR )
3129, 30sylib 122 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D : ( X  X.  X ) --> RR )
32 ismet2 14941 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
337, 31, 32sylanbrc 417 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   {cpr 3644   class class class wbr 4059    X. cxp 4691   -->wf 5286   ` cfv 5290  (class class class)co 5967    e. cmpo 5969  infcinf 7111   RRcr 7959   0cc0 7960   RR*cxr 8141    < clt 8142    <_ cle 8143   RR+crp 9810   *Metcxmet 14413   Metcmet 14414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-xneg 9929  df-xadd 9930  df-icc 10052  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-xmet 14421  df-met 14422
This theorem is referenced by:  mopnex  15092
  Copyright terms: Public domain W3C validator