ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmet Unicode version

Theorem bdmet 14822
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdmet
StepHypRef Expression
1 rpxr 9753 . . . 4  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2 rpgt0 9757 . . . 4  |-  ( R  e.  RR+  ->  0  < 
R )
31, 2jca 306 . . 3  |-  ( R  e.  RR+  ->  ( R  e.  RR*  /\  0  <  R ) )
4 stdbdmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
54bdxmet 14821 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
653expb 1206 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  ( R  e. 
RR*  /\  0  <  R ) )  ->  D  e.  ( *Met `  X ) )
73, 6sylan2 286 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
8 xmetcl 14672 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
983expb 1206 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
109adantlr 477 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
111ad2antlr 489 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR* )
12 xrmincl 11448 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
1310, 11, 12syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
14 rpre 9752 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
1514ad2antlr 489 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR )
16 xmetge0 14685 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
17163expb 1206 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
1817adantlr 477 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
19 rpge0 9758 . . . . . . 7  |-  ( R  e.  RR+  ->  0  <_  R )
2019ad2antlr 489 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  R )
21 0xr 8090 . . . . . . 7  |-  0  e.  RR*
22 xrlemininf 11453 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  (
x C y )  e.  RR*  /\  R  e. 
RR* )  ->  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2321, 10, 11, 22mp3an2i 1353 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( 0  <_ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2418, 20, 23mpbir2and 946 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )
)
25 xrmin2inf 11450 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
2610, 11, 25syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
27 xrrege0 9917 . . . . 5  |-  ( ( (inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e. 
RR*  /\  R  e.  RR )  /\  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  /\ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R
) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2813, 15, 24, 26, 27syl22anc 1250 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2928ralrimivva 2579 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
304fmpo 6268 . . 3  |-  ( A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR  <->  D :
( X  X.  X
) --> RR )
3129, 30sylib 122 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D : ( X  X.  X ) --> RR )
32 ismet2 14674 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
337, 31, 32sylanbrc 417 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {cpr 3624   class class class wbr 4034    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927  infcinf 7058   RRcr 7895   0cc0 7896   RR*cxr 8077    < clt 8078    <_ cle 8079   RR+crp 9745   *Metcxmet 14168   Metcmet 14169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-xneg 9864  df-xadd 9865  df-icc 9987  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-xmet 14176  df-met 14177
This theorem is referenced by:  mopnex  14825
  Copyright terms: Public domain W3C validator