ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdmet Unicode version

Theorem bdmet 14974
Description: The standard bounded metric is a proper metric given an extended metric and a positive real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdmet
StepHypRef Expression
1 rpxr 9783 . . . 4  |-  ( R  e.  RR+  ->  R  e. 
RR* )
2 rpgt0 9787 . . . 4  |-  ( R  e.  RR+  ->  0  < 
R )
31, 2jca 306 . . 3  |-  ( R  e.  RR+  ->  ( R  e.  RR*  /\  0  <  R ) )
4 stdbdmet.1 . . . . 5  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
54bdxmet 14973 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
653expb 1207 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  ( R  e. 
RR*  /\  0  <  R ) )  ->  D  e.  ( *Met `  X ) )
73, 6sylan2 286 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( *Met `  X
) )
8 xmetcl 14824 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
983expb 1207 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
109adantlr 477 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  RR* )
111ad2antlr 489 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR* )
12 xrmincl 11577 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
1310, 11, 12syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR* )
14 rpre 9782 . . . . . 6  |-  ( R  e.  RR+  ->  R  e.  RR )
1514ad2antlr 489 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  ->  R  e.  RR )
16 xmetge0 14837 . . . . . . . 8  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
17163expb 1207 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
1817adantlr 477 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  ( x C y ) )
19 rpge0 9788 . . . . . . 7  |-  ( R  e.  RR+  ->  0  <_  R )
2019ad2antlr 489 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_  R )
21 0xr 8119 . . . . . . 7  |-  0  e.  RR*
22 xrlemininf 11582 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  (
x C y )  e.  RR*  /\  R  e. 
RR* )  ->  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2321, 10, 11, 22mp3an2i 1355 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( 0  <_ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <->  ( 0  <_  ( x C y )  /\  0  <_  R ) ) )
2418, 20, 23mpbir2and 947 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )
)
25 xrmin2inf 11579 . . . . . 6  |-  ( ( ( x C y )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
2610, 11, 25syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R )
27 xrrege0 9947 . . . . 5  |-  ( ( (inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e. 
RR*  /\  R  e.  RR )  /\  (
0  <_ inf ( {
( x C y ) ,  R } ,  RR* ,  <  )  /\ inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  <_  R
) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2813, 15, 24, 26, 27syl22anc 1251 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR+ )  /\  ( x  e.  X  /\  y  e.  X ) )  -> inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
2928ralrimivva 2588 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR )
304fmpo 6287 . . 3  |-  ( A. x  e.  X  A. y  e.  X inf ( { ( x C y ) ,  R } ,  RR* ,  <  )  e.  RR  <->  D :
( X  X.  X
) --> RR )
3129, 30sylib 122 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D : ( X  X.  X ) --> RR )
32 ismet2 14826 . 2  |-  ( D  e.  ( Met `  X
)  <->  ( D  e.  ( *Met `  X )  /\  D : ( X  X.  X ) --> RR ) )
337, 31, 32sylanbrc 417 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR+ )  ->  D  e.  ( Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   {cpr 3634   class class class wbr 4044    X. cxp 4673   -->wf 5267   ` cfv 5271  (class class class)co 5944    e. cmpo 5946  infcinf 7085   RRcr 7924   0cc0 7925   RR*cxr 8106    < clt 8107    <_ cle 8108   RR+crp 9775   *Metcxmet 14298   Metcmet 14299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-xneg 9894  df-xadd 9895  df-icc 10017  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-xmet 14306  df-met 14307
This theorem is referenced by:  mopnex  14977
  Copyright terms: Public domain W3C validator