ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgecl Unicode version

Theorem rpgecl 9839
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 1001 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR )
2 0red 8108 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  e.  RR )
3 rpre 9817 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
433ad2ant1 1021 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  A  e.  RR )
5 rpgt0 9822 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
653ad2ant1 1021 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  <  A )
7 simp3 1002 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  A  <_  B )
82, 4, 1, 6, 7ltletrd 8531 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  <  B )
9 elrp 9812 . 2  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
101, 8, 9sylanbrc 417 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    e. wcel 2178   class class class wbr 4059   RRcr 7959   0cc0 7960    < clt 8142    <_ cle 8143   RR+crp 9810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057  ax-rnegex 8069  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-rp 9811
This theorem is referenced by:  divge1  9880  rpgecld  9893  logge0  15467
  Copyright terms: Public domain W3C validator