ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgecl Unicode version

Theorem rpgecl 9684
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 998 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR )
2 0red 7960 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  e.  RR )
3 rpre 9662 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
433ad2ant1 1018 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  A  e.  RR )
5 rpgt0 9667 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
653ad2ant1 1018 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  <  A )
7 simp3 999 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  A  <_  B )
82, 4, 1, 6, 7ltletrd 8382 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  <  B )
9 elrp 9657 . 2  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
101, 8, 9sylanbrc 417 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    e. wcel 2148   class class class wbr 4005   RRcr 7812   0cc0 7813    < clt 7994    <_ cle 7995   RR+crp 9655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-rnegex 7922  ax-pre-ltwlin 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-rp 9656
This theorem is referenced by:  divge1  9725  rpgecld  9738  logge0  14386
  Copyright terms: Public domain W3C validator