ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpgecl Unicode version

Theorem rpgecl 9774
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Assertion
Ref Expression
rpgecl  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )

Proof of Theorem rpgecl
StepHypRef Expression
1 simp2 1000 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR )
2 0red 8044 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  e.  RR )
3 rpre 9752 . . . 4  |-  ( A  e.  RR+  ->  A  e.  RR )
433ad2ant1 1020 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  A  e.  RR )
5 rpgt0 9757 . . . 4  |-  ( A  e.  RR+  ->  0  < 
A )
653ad2ant1 1020 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  <  A )
7 simp3 1001 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  A  <_  B )
82, 4, 1, 6, 7ltletrd 8467 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  0  <  B )
9 elrp 9747 . 2  |-  ( B  e.  RR+  <->  ( B  e.  RR  /\  0  < 
B ) )
101, 8, 9sylanbrc 417 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    e. wcel 2167   class class class wbr 4034   RRcr 7895   0cc0 7896    < clt 8078    <_ cle 8079   RR+crp 9745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-rnegex 8005  ax-pre-ltwlin 8009
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-rp 9746
This theorem is referenced by:  divge1  9815  rpgecld  9828  logge0  15200
  Copyright terms: Public domain W3C validator